1
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Salvia MV, Addison F, Alniss HY, Buurma NJ, Khalaf AI, Mackay SP, Anthony NG, Suckling CJ, Evstigneev MP, Santiago AH, Waigh RD, Parkinson JA. Thiazotropsin aggregation and its relationship to molecular recognition in the DNA minor groove. Biophys Chem 2013; 179:1-11. [PMID: 23714424 DOI: 10.1016/j.bpc.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
Aggregated states have been alluded to for many DNA minor groove binders but details of the molecule-on-molecule relationship have either been under-reported or ignored. Here we report our findings from ITC and NMR measurements carried out with AIK-18/51, a compound representative of the thiazotropsin class of DNA minor groove binders. The free aqueous form of AIK-18/51 is compared with that found in its complex with cognate DNA duplex d(CGACTAGTCG)2. Molecular self-association of AIK-18/51 is consistent with anti-parallel, face-to-face dimer formation, the building block on which the molecule aggregates. This underlying structure is closely allied to the form found in the ligand's DNA complex. NMR chemical shift and diffusion measurements yield a self-association constant Kass=(61±19)×10(3)M(-1) for AIK-18/51 that fits with a stepwise self-assembly model and is consistent with ITC data. The deconstructed energetics of this assembly process are reported with respect to a design strategy for ligand/DNA recognition.
Collapse
Affiliation(s)
- Marie-Virginie Salvia
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|