Zhao W, He A, Xu Y. Second hyperpolarizability of C-H, C-D, and C≡N stretch vibrations determined from computational Raman activities and a comparison with experiments.
J Phys Chem B 2013;
117:15812-8. [PMID:
24020330 DOI:
10.1021/jp4073119]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently demonstrated that the second hyperpolarizability γ of a selected vibrational mode of a molecule can be determined by using the computational Raman activity against an internal standard with a known Raman γ value. This approach provides a convenient way for prediction of the γ magnitude of DOVE four wave mixing spectroscopy, an optical analogue to two-dimensional (2D) NMR. Here, by using the Hartree-Fock (HF) method, the density functional theory (DFT) method, and the second-order Møller-Plesset perturbation theory (MP2) method, we extend our early work from the less anharmonic region <2000 cm(-1) into the more anharmonic region >2000 cm(-1) covering C-H, C-D, and C≡N stretching modes of benzene, deuterated benzene, acetonitrile, deuterated acetonitrile, and tetrahydrofuran. The computed Raman γ values of these vibrational modes have been determined by using either the 992 cm(-1) Raman band of benzene or the compound's own Raman band (C-C stretch) around 800-1000 cm(-1) as an internal standard. In this more anharmonic region, the HF method with a larger basis set provides the best outputs and the predicted Raman γ values agree well with experimental values for most of the vibrational modes studied. By choosing a suitable method and basis set, this facile approach could be applied to a broader spectral range for Raman γ estimation of various materials.
Collapse