1
|
Sherif AY, Shahba AAW. Development of a Multifunctional Oral Dosage Form via Integration of Solid Dispersion Technology with a Black Seed Oil-Based Self-Nanoemulsifying Drug Delivery System. Biomedicines 2023; 11:2733. [PMID: 37893108 PMCID: PMC10604588 DOI: 10.3390/biomedicines11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lansoprazole (LZP) is used to treat acid-related gastrointestinal disorders; however, its low aqueous solubility limits its oral absorption. Black seed oil (BSO) has gastroprotective effects, making it a promising addition to gastric treatment regimens. The present study aims to develop a stable multifunctional formulation integrating solid dispersion (SD) technology with a bioactive self-nanoemulsifying drug delivery system (SNEDDS) based on BSO to synergistically enhance LZP delivery and therapeutic effects. The LZP-loaded SNEDDS was prepared using BSO, Transcutol P, and Kolliphor EL. SDs were produced by microwave irradiation and lyophilization using different polymers. The formulations were characterized by particle apparent hydrodynamic radius analysis, zeta potential, SEM, DSC, PXRD, and in vitro dissolution testing. Their chemical and physical stability under accelerated conditions was also examined. Physicochemical characterization revealed that the dispersed systems were in the nanosize range (<500 nm). DSC and PXRD studies revealed that lyophilization more potently disrupted LZP crystallinity versus microwave heating. The SNEDDS effectively solubilized LZP but degraded completely within 1 day. Lyophilized SDs with Pluronic F-127 demonstrated the highest LZP dissolution efficiency (3.5-fold vs. drug) and maintained chemical stability (>97%) for 1 month. SDs combined with the SNEDDS had variable effects suggesting that the synergistic benefits were dependent on the formulation and preparation method. Lyophilized LZP-Pluronic F127 SD enabled effective and stable LZP delivery alongside the bioactive effects of the BSO-based SNEDDS. This multifunctional system is a promising candidate with the potential for optimized gastrointestinal delivery of LZP and bioactive components.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
| |
Collapse
|
2
|
Zhang Y, Liu F, Cao Y, Xu H, Xie Y, Xiao X, Agyekumwaa Addo K, Peng XF. Preparation and characterization of a solid dispersion of Hexahydrocolupulone and its application in the preservation of fresh apple juice. Food Chem 2023; 424:136367. [PMID: 37207607 DOI: 10.1016/j.foodchem.2023.136367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Hops extracts and their derivatives have many important biological activities, among them, excellent antibacterial and antioxidant properties make them a promising food preservative. However, poor water solubility limits their application in the food industry. This work aimed to improve the solubility of Hexahydrocolupulone (HHCL) by preparing solid dispersion (SD) and investigating the application of the obtained products (HHCL-SD) in actual food systems. HHCL-SD was prepared by solvent evaporation with PVPK30 as a carrier. The solubility of HHCL was dramatically increased to 24.72 mg/mL(25 ℃)by preparing HHCL-SD, much higher than that of raw HHCL (0.002 mg/mL). The structure of HHCL-SD and the interaction between HHCL and PVPK30 were analyzed. HHCL-SD was confirmed to have excellent antibacterial and antioxidant activities. Furthermore, the addition of HHCL-SD proved to be beneficial for the sensory, nutritional quality, and microbiological safety of fresh apple juice, hence prolonging its shelf-life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China; School of Chinese Ethnic Medicine, Guizhou Minzu University, Guizhou City, Guiyang Province 550025, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Hao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yijia Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Keren Agyekumwaa Addo
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xian-Feng Peng
- Guangzhou Insighter Biotechnology Co. Ltd, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
3
|
Wang X, Zhu Y, Zhao X, Zhang S, Cao M, Wang X, Li W. Development and characterization of an amorphous Curcumin-Eudragit®E100 Solid Dispersions with improved solubility, stability, and pharmacokinetic properties. Pharm Dev Technol 2022; 27:965-974. [DOI: 10.1080/10837450.2022.2141778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Xin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yijian Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xudong Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Meiting Cao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyue Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Rajput K, Tawade S, Nangare S, Shirsath N, Bari S, Zawar L. Formulation, optimization, and in-vitro-ex-vivo evaluation of dual-crosslinked zinc pectinate-neem gum-interpenetrating polymer network mediated lansoprazole loaded floating microbeads. Int J Biol Macromol 2022; 222:915-926. [PMID: 36181884 DOI: 10.1016/j.ijbiomac.2022.09.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
Low methoxy pectin (LM pectin) suffers from burst release owing to its high swellability and solubility in water. Consequently, in ways to design an ideal drug delivery system, these obstacles must be surmounted. Therefore, the work aimed to design dual crosslinked LM pectin -neem gum (NG) mediated interpenetrating polymer network (IPN) floating mucoadhesive microbeads for lansoprazole (LNZ) gastro-retentive delivery. In short, LNZ-loaded floating microbeads were achieved by using the ionic gelation method wherein zinc acetate was preferred as a crosslinking agent. The optimization of IPN microbeads was performed employing a 32-factorial design wherein concentration of pectin and NG was considered as independent factors whereas dependant factors are entrapment efficiency and drug release. Importantly, carboxylic functionality of low methoxy (LM) pectin and hydroxylic functionality NG cross-linked with Zn+2 forms a 3D network. Diffractogram and thermogram revealed that conversion of drug from crystalline to amorphous form because of entrapment of drug within polymeric network. Anticipated floating microbeads showed that polymer concentration had considerable effect on drug encapsulation efficiency and drug release. Briefly, optimizing floating microbeads (Batch B:5) showed maximum drug entrapment (87.47 %) with a delayed drug release (69.20 %, at 8 h) due to formation of strong IPN. Moreover, it showed good mucoadhesive aptitude with goat stomach mucosa because of entanglement between gum and mucus layer. In addition, use of calcium silicate assists to modulate floating profile of IPN microbeads. Therefore, designing dual crosslinked zinc-pectinate-NG mediated IPN floating mucoadhesive microbeads will offer a new substitute for floating delivery.
Collapse
Affiliation(s)
- Kirti Rajput
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Shraddha Tawade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Sopan Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Nitin Shirsath
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Sanjaykumar Bari
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Laxmikant Zawar
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India.
| |
Collapse
|
5
|
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility Enhancement of Methotrexate by Solid Nanodispersion Approach for the Improved Treatment of Small Cell Lung Carcinoma. Curr Top Med Chem 2021; 21:140-150. [PMID: 32888268 DOI: 10.2174/1568026620999200904120241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present work aimed to develop MT loaded solid Nano dispersion by improving its solubility, half-life and bioavailability in biological system thereby this formulation may be afforded economically. BACKGROUND Small cell lung carcinoma is a type of malignant tumor characterized by uncontrolled cell growth at lung tissues. The potent anti-cancer drug methotrexate (MT) chosen for the present work is poorly soluble in water (BCS type IV class) with short half-life and hepatotoxic effect. OBJECTIVE With the concept of polymeric surfactant to improve the solubility along with wettability of drugs, the present work has been hypothesized to improve its solubility using polyvinyl pyrollidone (PVP K30) polymer and α- tocopheryl polyethylene glycol 1000 succinate (TPGS) surfactant, thereby the bioavailability is expected to get enhanced. By varying the PVP K30 and TPGS ratios different formulations were developed using emulsification process. METHODS The developed MT loaded solid nanodispersion was further characterized for its particle size, charge, morphology, encapsulation efficiency and in-vitro release behavior etc. Results: The results of FT-IR spectrometric analysis indicated the compatibility nature of MTX, PVPK30 and TPGS. The developed formulations showed spherical morphology, particle size ranging from 59.28±24.2 nm to 169.33±10.85 nm with a surface charge ranging from -10.33 ± 2.81mV to -9.57 ± 1.2 mV. The in vitro release studies as performed by dialysis bag method showed a sustained release pattern as checked by UV Spectrophotometer. Residual solvent analysis for MTXNDs performed by HPLC indicates there is no residual DMSO in the formulation. Transmission electron microscopic image of MTXNDs revealed that the particles are spherical shaped with a solid core structure. Haemolytic assay indicates that the developed formulation is safe for intravenous administration. Cell culture studies in A549 cells indicates the enhanced cytotoxic effect for the developed formulation. CONCLUSION This proof of study indicates that the developed formulation may have anticancer potential for SCLC treatment.
Collapse
Affiliation(s)
- Karthikeyan Rajalingam
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| |
Collapse
|
6
|
Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27:1625-1643. [PMID: 33207947 PMCID: PMC7737680 DOI: 10.1080/10717544.2020.1846638] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Fahad Alotaibi
- General Directorate Health Affairs, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Effect on in-vitro release of individual and dual contraceptive drug loading from gelatin electrospun fibers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci 2018; 122:94-104. [PMID: 29908301 DOI: 10.1016/j.ejps.2018.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Abstract
Nanoparticle engineering is a well-defined technique employed as a novel and effective method in drug design and delivery. It is widely used to control particle size, as well as the morphological and physicochemical properties of active pharmaceutical ingredients. Furthermore, it serves as a method of pre-dispersion preparation for various dosage form developments. Nanotechnology produces nanomaterials with enhanced properties in terms of solubility, dissolution and permeability. In this work, ultrasonic-assisted precipitation was employed to produce nanosuspensions of poorly water-soluble loratadine, using different stabilizers. The objective of our study was attempting to prepare solid nanoparticles of loratadine to be used as a possible intermediate for designing various dosage forms. The effects of the type(s) and concentration(s) of stabilizer(s) on mean particle size were assessed. Optimal process parameters required to produce homogeneous nanoparticles with particle size below 500 nm and polydispersity less than 0.3 were determined both for precipitation and ultrasonication. Pre-dispersions were evaluated for their particle size, polydispersity index and zeta potential. Freeze-drying was employed to produce dry nanoparticles. Particle size, particle size distribution and zeta potential of the dried nanoparticles were measured after reconstitution in water. Besides thermal analysis using DSC and structural analyses (XRPD and FT-IR), the morphological characteristics and dissolution behaviors were also investigated. The selected freeze-dried nanoparticles had a mean particle size range of 353-441 nm, a polydispersity index ranging between 0.167 and 0.229 and a zeta potential between -25.7 and -20.7 mV. These results suggest that material and process parameters were successfully optimized. DSC and XRPD spectra confirmed interactions between the formulation's components during freeze-drying. The solid nanoparticles showed 30-42% of cumulative release after 10 min compared to less than 1% of dissolution characterizing loratadine without pre-processing. This study demonstrates that preparing dried loratadine nanoparticles suitable for designing effective drug preparations is a feasible approach.
Collapse
|
9
|
Karuppannan C, Sivaraj M, Kumar JG, Seerangan R, Balasubramanian S, Gopal DR. Fabrication of Progesterone-Loaded Nanofibers for the Drug Delivery Applications in Bovine. NANOSCALE RESEARCH LETTERS 2017; 12:116. [PMID: 28228001 PMCID: PMC5309186 DOI: 10.1186/s11671-016-1781-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/09/2016] [Indexed: 05/24/2023]
Abstract
Progesterone is a potent drug for synchronization of the estrus and ovulation cycles in bovine. At present, the estrus cycle of bovine is controlled by the insertion of progesterone-embedded silicone bands. The disadvantage of nondegradable polymer inserts is to require for disposal of these bands after their use. The study currently focuses on preparation of biodegradable progesterone-incorporated nanofiber for estrus synchronization. Three different concentrations (1.2, 1.9, and 2.5 g) of progesterone-impregnated nanofibers were fabricated using electrospinning. The spun membrane were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Uniform surface morphology, narrow size distribution, and interaction between progesterone and zein were confirmed by SEM. FTIR spectroscopy indicated miscibility and interaction between zein and progesterone. X-ray analysis indicated that the size of zein crystallites increased with progesterone content in nanofibers. Significant differences in thermal behavior of progesterone-impregnated nanofiber were observed by DSC. Cell viability studies of progesterone-loaded nanofiber were examined using MTT assay. In vitro release experiment is to identify the suitable progesterone concentration for estrus synchronization. This study confirms that progesterone-impregnated nanofibers are an ideal vehicle for progesterone delivery for estrus synchronization of bovines.
Collapse
Affiliation(s)
- Chitra Karuppannan
- Translational Research Platform for Veterinary Biologicals, Chennai, India
| | - Mehnath Sivaraj
- Translational Research Platform for Veterinary Biologicals, Chennai, India
| | - J. Ganesh Kumar
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - S. Balasubramanian
- Translational Research Platform for Veterinary Biologicals, Chennai, India
| | - Dhinakar Raj Gopal
- Translational Research Platform for Veterinary Biologicals, Chennai, India
| |
Collapse
|
10
|
Alsulays BB, Kulkarni V, Alshehri SM, Almutairy BK, Ashour EA, Morott JT, Alshetaili AS, Park JB, Tiwari RV, Repka MA. Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole. Drug Dev Ind Pharm 2016; 43:789-796. [PMID: 27486807 DOI: 10.1080/03639045.2016.1220567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12 PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for six months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods.
Collapse
Affiliation(s)
- Bader B Alsulays
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA.,b Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Alkharj , Saudi Arabia
| | - Vijay Kulkarni
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Sultan M Alshehri
- c Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Bjad K Almutairy
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Eman A Ashour
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Joseph T Morott
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Abdullah S Alshetaili
- b Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Alkharj , Saudi Arabia
| | - Jun-Bom Park
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Roshan V Tiwari
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| | - Michael A Repka
- a Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , MS , USA.,d Pii Center for Pharmaceutical Technology, School of Pharmacy , The University of Mississippi , Oxford , MS , USA
| |
Collapse
|
11
|
Tsai TR, Cham TM, Wu YT. HPLC Determination of Lansoprazole and Method Application for the Formulation Development of Enteric-coated Lansoprazole Pellets. J CHIN CHEM SOC-TAIP 2015. [DOI: 10.1002/jccs.201500003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Zhang J, Zhou X, Wang D, Zhou X, Yun F, Tan S. A Comprehensive Study of Extraction of L-Lysine withSec-Octylphenoxy Acetic Acid in Sulfonated Kerosene. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.876047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zhang J, Zhou X, Zhou Z, Chen H, Chen L. Preparation and characterization of L-phenylalanine modified chitosan resin for aromatic amino acid adsorption. Macromol Res 2014. [DOI: 10.1007/s13233-014-2075-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Loh GOK, Tan YTF, Peh KK. Hydrophilic polymer solubilization on norfloxacin solubility in preparation of solid dispersion. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.01.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal 2014; 96:10-20. [PMID: 24705456 DOI: 10.1016/j.jpba.2014.03.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 11/17/2022]
Abstract
Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.
Collapse
Affiliation(s)
- K Yuvaraja
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Jasmina Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
16
|
Zhang J, Zhou X, Wang D, Sang L, Peng Y, Tan S, Li Q. High Selective Separation of Flavonoids based on Crosslinked Chitosan Resin Grafted by Quercetin. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.808669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, Lu M, Wu C. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol 2013; 66:148-66. [DOI: 10.1111/jphp.12183] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Hot melt extrusion (HME) as a technique for producing amorphous solid dispersion (ASD) has been widely used in pharmaceutical research. The biggest challenge for the application of HME is the thermal degradation of drug, poor physical stability of ASD and precipitation of drug during dissolution. Interactions between drugs and polymers may play an important role in overcoming these barriers. In this review, influence of drug–polymer interactions on HME and the methods for characterizing the drug–polymer interactions were reviewed.
Key findings
Strong drug–polymer interactions, especially ionic interactions and hydrogen bonds, are helpful to improving the thermal stability of drug during HME, enhancing the physical stability of ASD during storage and maintaining supersaturated solution after dissolution in gastrointestinal tract. The interactions can be quantitatively and qualitatively characterized by many analysing methods.
Conclusions
As many factors collectively determine the properties of HME products, drug–polymer interactions play an extremely important role. However, the action mechanisms of drug–polymer interactions need intensive investigation to provide more useful information for optimizing the formulation and the process parameters of HME.
Collapse
Affiliation(s)
- Yongcheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huishi Pang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhefei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ge Li
- Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85:799-813. [DOI: 10.1016/j.ejpb.2013.09.007] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/29/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022]
|
19
|
Solid dispersion tablets of breviscapine with polyvinylpyrrolidone K30 for improved dissolution and bioavailability to commercial breviscapine tablets in beagle dogs. Eur J Drug Metab Pharmacokinet 2013; 39:203-10. [PMID: 24061692 DOI: 10.1007/s13318-013-0150-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Breviscapine, one of cardiovascular drugs extracted from a Chinese herb Erigeron breviscapinus, has been frequently used to treat cardiovascular diseases such as hypertension, angina pectoris, coronary heart disease and stroke. However, its poor water solubility and low bioavailability in vivo severely restrict the clinical application. To overcome these drawbacks, breviscapine solid dispersion tablets consisting of breviscapine, polyvinylpyrrolidone K30 (PVP K30), microcrystalline cellulose and crospovidone were appropriately prepared. In vitro dissolution profiles showed that breviscapine released percentage of solid dispersion tablets reached 90 %, whereas it was only 40 % for commercial breviscapine tablets. Comparative pharmacokinetic study between solid dispersion tablets and commercial products was investigated on the normal beagle dogs after oral administration. Results showed that the bioavailability of breviscapine was greatly increased by 3.45-fold for solid dispersion tablets. The greatly improved dissolution rate and bioavailability might be attributed to intermolecular hydrogen bonding reactions between PVP K30 and scutellarin. These findings suggest that our solid dispersion tablets can greatly improve the bioavailability as well as the dissolution rate of breviscapine.
Collapse
|
20
|
Huang W, Zou T, Li S, Jing J, Xia X, Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech 2013; 14:675-81. [PMID: 23516111 DOI: 10.1208/s12249-013-9953-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/04/2013] [Indexed: 11/30/2022] Open
Abstract
This study investigated the preparation of drug-loaded fibers using a modified coaxial electrospinning process, in which only unspinnable solvent was used as sheath fluid. With zein/ibuprofen (IBU) co-dissolving solution and N, N-dimethylformamide as core and sheath fluids, respectively, the drug-loaded zein fibers could be generated continuously and smoothly without any clogging of the spinneret. Field emission scanning electron microscopy and transmission electron microscopy observations demonstrated that the fibers had ribbon morphology with a smooth surface. Their average diameters were 0.94±0.34 and 0.67±0.21 μm when the sheath-to-core flow rate ratios were taken as 0.11 and 0.25, respectively. X-ray diffraction and differential scanning calorimetry verified that IBU was in an amorphous state in all fiber composites. Fourier transform infrared spectra showed that zein had good compatibility with IBU owing to hydrogen bonding. In vitro dissolution tests showed that all the fibers could provide sustained drug release files via a typical Fickian diffusion mechanism. The modified coaxial electrospinning process reported here can expand the capability of electrospinning in generating fibers and provides a new manner for developing novel drug delivery systems.
Collapse
|