1
|
Er-Rajy M, El Fadili M, Faris A, Zarougui S, Elhallaoui M. Design of potential anti-cancer agents as COX-2 inhibitors, using 3D-QSAR modeling, molecular docking, oral bioavailability proprieties, and molecular dynamics simulation. Anticancer Drugs 2024; 35:117-128. [PMID: 38018861 DOI: 10.1097/cad.0000000000001492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Modeling the structural properties of novel morpholine-bearing 1, 5-diaryl-diazole derivatives as potent COX-2 inhibitor, two proposed models based on CoMFA and CoMSIA were evaluated by external and internal validation methods. Partial least squares analysis produced statistically significant models with Q 2 values of 0.668 and 0.652 for CoMFA and CoMSIA, respectively, and also a significant non-validated correlation coefficient R² with values of 0.882 and 0.878 for CoMFA and CoMSIA, respectively. Both models met the requirements of Golbraikh and Tropsha, which means that both models are consistent with all validation techniques. Analysis of the CoMFA and CoMSIA contribution maps and molecular docking revealed that the R1 substituent has a very significant effect on their biological activity. The most active molecules were evaluated for their thermodynamic stability by performing MD simulations for 100 ns; it was revealed that the designed macromolecular ligand complex with 3LN1 protein exhibits a high degree of structural and conformational stability. Based on these results, we predicted newly designed compounds, which have acceptable oral bioavailability properties and would have high synthetic accessibility.
Collapse
Affiliation(s)
- Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | | | | | | |
Collapse
|
2
|
Yao J, Wen J, Li H, Yang Y. Surface functional groups determine adsorption of pharmaceuticals and personal care products on polypropylene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127131. [PMID: 34560482 DOI: 10.1016/j.jhazmat.2021.127131] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The pervasiveness of microplastics (MPs), which can absorb pharmaceuticals and personal care products (PPCPs), has a certain impact on pollutant migration in natural waters. The adsorption behaviors of PPCPs on the aged polypropylene (PP) followed the pseudo-second-order kinetics and Langmuir isotherm, and the adsorption capacity (qe) on the aged PP was much higher than that on the fresh PP. The Weber-Morris and Boyd models confirmed that the liquid-film and intra-particle diffusion affected the adsorption of PPCPs on the aged PP while the surface diffusion was a rate-limiting step for the fresh PP. The analysis of SEM-EDS, BET, FT-IR, and XPS further showed that changes in the type and content of the surface functional groups of PP led to differences in adsorption capacity and adsorption interactions. The Dragon-descriptor-based LFER and the quantum-chemical-descriptor-based QSAR models reflected the difference in adsorption interaction mechanisms. The examined models showed that the adsorption of the fresh PP toward PPCPs relied on hydrophobic and hydrogen bonding interaction, while for the aged PP electrostatic interaction and hydrogen bonding controlled the adsorption. The findings clarified interactions between PPCPs and MPs and provided a theoretical basis for the assessment of environmental behavior and ecological risk when MPs and PPCPs coexist.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Jiayi Wen
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
3
|
Djajić N, Petković M, Zečević M, Otašević B, Malenović A, Holzgrabe U, Protić A. A comprehensive study on retention of selected model substances in β-cyclodextrin-modified high performance liquid chromatography. J Chromatogr A 2021; 1645:462120. [PMID: 33839575 DOI: 10.1016/j.chroma.2021.462120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
The quantitative structure-retention relationship (QSRR) models are not only employed in retention behaviour prediction, but also in an in-depth understanding of complex chromatographic systems. The goal of the present research is to enable the comprehensive understanding of retention underlying the separation in β-cyclodextrin (CD) modified reversed-phase high performance liquid chromatography (RP-HPLC) systems, through the development of mixed QSRR models. Moreover, the amount of β-CD adsorbed on the stationary phase surface (β-CDA) is added as the model's input in order to evaluate its contribution to both model performances and retention. Nuclear magnetic resonance (NMR) experiments were conducted to confirm the predicted inclusion complex structures and support the application of in silico tools. The most significant descriptors revealed that retention is governed by the steric factors 7.5 Å distant from the geometrical centre of a molecule, 3D arrangement of atoms determining the molecular size and shape, lipophilicity indicated by topological distances, as well as the unbound system's energy, related to the inclusion complex formation. In addition, a notable effect of the pH of the aqueous phase on the retention of ionizable analytes was shown. In the case of pH of the aqueous phase and β-CDA the change in retention behaviour of the studied analytes was observed only at the highest β-CDA value (5.17 μM/m2), but it was not related to the ionization state of analytes. When the analytes did not change the ionization form across the investigated studied pH range, and the acetonitrile content in the mobile phase was 25% (v/v), the retention factor had low values regardless of the β-CDA; under these circumstances the retention is probably acetonitrile driven.
Collapse
Affiliation(s)
- Nevena Djajić
- University of Belgrade - Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia
| | - Miloš Petković
- University of Belgrade - Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia
| | - Mira Zečević
- University of Belgrade - Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia
| | - Biljana Otašević
- University of Belgrade - Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia
| | - Andjelija Malenović
- University of Belgrade - Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany.
| | - Ana Protić
- University of Belgrade - Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe Street No. 450, 11 221 Belgrade, Serbia.
| |
Collapse
|
4
|
Duchowicz PR. Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors. Cells 2018; 7:cells7020013. [PMID: 29443884 PMCID: PMC5850101 DOI: 10.3390/cells7020013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 01/22/2023] Open
Abstract
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold², and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.
Collapse
Affiliation(s)
- Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata 1900, Argentina.
| |
Collapse
|
5
|
Comelli NC, Duchowicz PR, Castro EA. QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1. Eur J Pharm Sci 2014; 62:171-9. [PMID: 24909730 DOI: 10.1016/j.ejps.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/01/2023]
Abstract
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (-logIC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure D-optimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (Rtest2). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method.
Collapse
Affiliation(s)
- Nieves C Comelli
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Av. Belgrano y Maestro Quiroga, 4700 Catamarca, Argentina.
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina
| | - Eduardo A Castro
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina
| |
Collapse
|
6
|
Araujo SC, Maltarollo VG, Honorio KM. Computational studies of TGF-βRI (ALK-5) inhibitors: analysis of the binding interactions between ligand-receptor using 2D and 3D techniques. Eur J Pharm Sci 2013; 49:542-9. [PMID: 23727056 DOI: 10.1016/j.ejps.2013.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
ALK-5 (Activin-Like Kinase 5) is a biological receptor involved in a variety of pathological processes such as cancer and fibrosis. ALK-5 receptor propagates an intracellular signaling that forms a protein complex capable of reaching the nucleus and modulating the gene transcription. In the present study, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of potent ALK-5 inhibitors. Significant correlation coefficients (CoMFA, r(2)=0.99 and q(2)=0.85; HQSAR, r(2)=0.92 and q(2)=0.72) were obtained, indicating the predictive potential of the 2D and 3D models for untested compounds. The models were then used to predict the potency of a test set, and the predicted values from the HQSAR and CoMFA models were in good agreement with the experimental results. The final QSAR models, along with the information obtained from 3D (steric and electrostatic) contour maps and 2D contribution maps, can be useful for the design of novel bioactive ligands.
Collapse
Affiliation(s)
- Sheila C Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, R. Santa Adélia 166, 09210-170 Santo André, SP, Brazil
| | | | | |
Collapse
|