1
|
Ono T, Kimura K, Ihara M, Yamanaka Y, Sasaki M, Mori H, Hisaeda Y. Room-Temperature Phosphorescence Emitters Exhibiting Red to Near-Infrared Emission Derived from Intermolecular Charge-Transfer Triplet States of Naphthalenediimide-Halobenzoate Triad Molecules. Chemistry 2021; 27:9535-9541. [PMID: 33780081 DOI: 10.1002/chem.202100906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/06/2022]
Abstract
Room-temperature phosphorescence (RTP) emitters have attracted significant attention. However, purely organic RTP emitters in red to near-infrared region have not been properly investigated. In this study, a series of naphthalenediimide-halobenzoate-linked molecules are synthesized, one of which exhibits efficient RTP properties, showing red to near-infrared emission in solid and aqueous dispersion. Spectroscopic studies and single-crystal X-ray diffraction analysis have shown that the difference in the stacking modes of compounds affects the optical properties, and the formation of intermolecular charge-transfer complexes of naphthalenediimide-halobenzoate moiety results in a bathochromic shift of absorption and RTP properties. The time-dependent density functional theory calculations showed that the formation of charge-transfer triplet states and the external heavy atom effect of the halogen atom enhance the intersystem crossing between excited singlet and triplet states.
Collapse
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazuki Kimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Megumi Ihara
- Department of Chemistry and Biochemistry, Graduate School of Engineering Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuri Yamanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Miori Sasaki
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hirotoshi Mori
- Department of Applied Chemistry, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Yamada K, Mori H, Sugaya T, Tadokoro M, Maeba J, Nozaki K, Haga MA. Synthesis, X-ray structure, photophysical properties, and theoretical studies of six-membered cyclometalated iridium(iii) complexes: revisiting Ir(pnbi) 2(acac). Dalton Trans 2019; 48:15212-15219. [PMID: 31577291 DOI: 10.1039/c9dt03392k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have determined the X-ray structure of Ir(pnbi)2(acac) (pnbi = 2-phenanthren-9-yl-1-phenyl-1H-benzimidazole; acac = acetylacetonate), which exhibits a six-membered metallocycle around the Ir center. This result stands in sharp contrast to previously postulated structures of Ir(pnbi)2(acac), which assumed a five-membered metallocycle. In this paper, we focus on the relative stability of five- and six-membered Ir(C^N) ring structures. DFT calculations of the total energies of Ir-(C^N) complexes indicated that six-membered structures are more stable when bulky substituents are present in the benzimidazole unit. When the phenanthrene group of pnbi was replaced with a naphthalene moiety, DFT calculations predicted that five-membered cycles are more stable than six-membered rings, which was confirmed experimentally by a single-crystal X-ray diffraction analysis. The steric bulk of the phenanthrene-containing polyaromatic ring ligand thus induces greater interligand repulsion between the two ligands, which plays an important role in determining the cyclometalation route. The Ir complexes examined in this study exhibit red emission (λem ≈ 660 nm) with relatively low quantum yields.
Collapse
Affiliation(s)
- Kie Yamada
- Department of Applied Chemistry, Chuo University, Kasuga 1-13-27, Tokyo 112-8551, Bunkyo-ku, Japan.
| | | | | | | | | | | | | |
Collapse
|