1
|
Fernández-Gijón CA, Olvera-Mancilla J, Lagadec RL, Barba-Behrens N, Rico-Bautista H, Toscano RA, Alexandrova L. 2-Substituted perimidines: Zwitterionic tauterism in solid state, substituent effect on their crystal packing and biological activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Harry NA, Ujwaldev SM, Aneeja T, Anilkumar G. A Comprehensive Overview of Perimidines: Synthesis, Chemical Transformations, and Applications. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201124141506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perimidines are nitrogen-containing heterocyclic scaffolds with a wide range of
biological and material properties. Several synthetic transformations on perimidines afford
fused heterocycles. This review focuses on every aspect of perimidines, including different
synthetic procedures, reactions and applications, and covers the literature published up to the
year 2020, using more than 170 references.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Sankuviruthiyil M. Ujwaldev
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| |
Collapse
|
3
|
Pozharskii AF, Gulevskaya AV, Claramunt RM, Alkorta I, Elguero J. Perimidines: a unique π-amphoteric heteroaromatic system. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data on the physicochemical characteristics, theoretical calculations, reactivity and synthetic methods for perimidines are summarized. Although perimidine and some of its simple 2-substituted derivatives were obtained by Sachs back in 1909, their chemistry and key physical properties remained unknown until the early 1970s. Subsequent studies revealed many fundamental features of the perimidine system, previously not encountered in the heterocyclic series. The first comprehensive review on perimidines was published forty years ago. The period that has passed since 1980 led to the emergence of new directions and trends. Several hundred new publications have appeared, the generalization of which has become the main purpose of this article. This primarily concerns the obtaining of highly nucleophilic and stable perimidine carbenes, new methods of electrophilic substitution and oxidation, establishment of a close relationship between perimidines and proton sponges, and modern theoretical calculations. Based on perimidines, many different polycondensed systems have been obtained. Applied research has developed especially rapidly in recent years. Many new compounds based on perimidines related to chemosensors, analytical reagents, dyes, metal catalysts, electronic devices, nanotechnology, and medical chemistry have been proposed. Some information under review is presented as Supplementary Materials. It contains six tables, which include data on the basicity constants of perimidines, details of some synthetic methods for perimidines and fused analogs and also a list of biological activities of perimidines.
The bibliography includes 387 references.
Collapse
|
4
|
Farghaly TA, Al-Hussain SA, Muhammad ZA, Abdallah MA, Zaki MEA. Synthesis and Reactions of Perimidines and Their Fused Systems. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200622113807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perimidines are peri-naphtho-fused derivatives of pyrimidine. They are of particular
interest as they are a rare example of an azine in which the lone pair of electrons of
pyrrole-like nitrogen participates in the π-system of the molecule. Perimidine is an interesting
class of heterocyclic compounds. Various synthetic analogs of perimidines have been
prepared and evaluated for many pharmacological activities in different models with desired
findings. They exhibit biological activities as antitumor, antiulcer, antimicrobial, and antifungal
agents. This review is an attempt to organize the synthesis and chemical reactions of
perimidine analogs reported to date systematically since 1955. It should be noted that this
review is the first one that includes the preparation and reactions of the perimidine ring.
Collapse
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Magda A. Abdallah
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
5
|
Shi XM, Xiao LN, Peng P. Crystal structure of 2-methyl-1 H-perimidine, C 12H 10N 2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C12H10N2, triclinic, P1̄ (no. 2), a = 9.0431(18) Å, b = 9.9770(19) Å, c = 11.623(2) Å, α = 102.375(3)°, β = 109.641(3)°, γ = 99.834(2)°, V = 930.5(3) Å3, Z = 4, Rgt(F) = 0.0395, wRref(F2) = 0.1105, T = 128.15 K.
Collapse
Affiliation(s)
- Xiao-Ming Shi
- College of Chemistry and Chemical Engineering, Zhoukou Normal University , Zhoukou Henan 466001, P.R. China
| | - Li-Na Xiao
- College of Chemistry and Chemical Engineering, Zhoukou Normal University , Zhoukou Henan 466001, P.R. China
| | - Peng Peng
- College of Chemistry and Chemical Engineering, Zhoukou Normal University , Zhoukou Henan 466001, P.R. China
| |
Collapse
|
6
|
Alam M, Lee DU. Synthesis, spectroscopic and computational studies of 2-(thiophen-2-yl)-2,3-dihydro-1H-perimidine: An enzymes inhibition study. Comput Biol Chem 2016; 64:185-201. [DOI: 10.1016/j.compbiolchem.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/12/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
|
7
|
Kołodziej B, Morawiak M, Kamieński B, Schilf W. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|