1
|
Włoch A, Stygar D, Bahri F, Bażanów B, Kuropka P, Chełmecka E, Pruchnik H, Gładkowski W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules 2020; 10:biom10121594. [PMID: 33255306 PMCID: PMC7760079 DOI: 10.3390/biom10121594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this work was the examination of biological activity of three selected racemic cis-β-aryl-δ-iodo-γ-lactones. Tested iodolactones differed in the structure of the aromatic fragment of molecule, bearing isopropyl (1), methyl (2), or no substituent (3) on the para position of the benzene ring. A broad spectrum of biological activity as antimicrobial, antiviral, antitumor, cytotoxic, antioxidant, and hemolytic activity was examined. All iodolactones showed bactericidal activity against Proteus mirabilis, and lactones 1,2 were active against Bacillus cereus. The highest cytotoxic activity towards HeLa and MCF7 cancer cell lines and NHDF normal cell line was found for lactone 1. All assessed lactones significantly disrupted antioxidative/oxidative balance of the NHDF, and the most harmful effect was determined by lactone 1. Contrary to lactone 1, lactones 2 and 3 did not induce the hemolysis of erythrocytes after 48 h of incubation. The differences in activity of iodolactones 1–3 in biological tests may be explained by their different impact on physicochemical properties of membrane as the packing order in the hydrophilic area and fluidity of hydrocarbon chains. This was dependent on the presence and type of alkyl substituent. The highest effect on the membrane organization was observed for lactone 1 due to the presence of bulky isopropyl group on the benzene ring.
Collapse
Affiliation(s)
- Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| | - Dominika Stygar
- Department of Physiology in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-751 Katowice, Poland;
| | - Fouad Bahri
- Laboratory of Microbiology and Plant Biology, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Barbara Bażanów
- Department of Veterinary Microbiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Medical University of Silesia, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| |
Collapse
|
2
|
Pawlak A, Henklewska M. The Role of Bcl-xL Protein Research in Veterinary Oncology. Int J Mol Sci 2020; 21:ijms21072511. [PMID: 32260403 PMCID: PMC7177433 DOI: 10.3390/ijms21072511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their significant impact on human and animal health, cancer diseases are an area of considerable concern for both human and veterinary medicine. Research on the cancer pathogenesis in companion animals, such as dogs, allows not only for improving canine cancer treatment, but also for translating the results into human oncology. Disruption of apoptosis in tumor-transformed cells is a well-known mechanism leading to the development of cancer. One of the main factors involved in this process are proteins belonging to the B-cell lymphoma 2 (Bcl-2) family, and the imbalance between pro-apoptotic and anti-apoptotic members of this family contributes to the development of cancer. Studies on the function of these proteins, including B-cell lymphoma-extra large (Bcl-xL), have also been intensively conducted in companion animals. The Bcl-xL gene was sequenced and found to share over 99% homology with the human protein. Research showed that the Bcl-2 family plays the same role in human and canine cells, and data from studies in dogs are fully translatable to other species, including humans. The role of this protein family in cancer development was also confirmed. The article presents the current state of knowledge on the importance of the Bcl-xL protein in veterinary oncology.
Collapse
|
3
|
Kamizela A, Gawdzik B, Urbaniak M, Lechowicz Ł, Białońska A, Kutniewska SE, Gonciarz W, Chmiela M. New γ-Halo- δ-lactones and δ-Hydroxy- γ-lactones with Strong Cytotoxic Activity. Molecules 2019; 24:molecules24101875. [PMID: 31096674 PMCID: PMC6572184 DOI: 10.3390/molecules24101875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
This paper presents the synthesis of γ -halo- δ -lactones, δ -iodo- γ -lactones and δ -hydroxy- γ -lactones from readily available organic substrates such as trans-crotonaldehyde and aryl bromides. Crystal structure analysis was carried out for lactones that were obtained in crystalline form. All halo- δ -lactones and δ -hydroxy- γ -lactones were highly cytotoxic against gastric cancer AGS cells with I C 50 values in the range of 0.0006-0.0044 mM. Some lactones showed high bactericidal activity against E. coli ATCC 8739 and S. aureus ATCC 65389, which reduced the number of CFU/mL by 70-83% and 87% respectively.
Collapse
Affiliation(s)
- Angelika Kamizela
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Mariusz Urbaniak
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Łukasz Lechowicz
- Institute of Biology, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Agata Białońska
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Sylwia Ewa Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| |
Collapse
|
4
|
Gładkowski W, Włoch A, Pawlak A, Sysak A, Białońska A, Mazur M, Mituła P, Maciejewska G, Obmińska-Mrukowicz B, Kleszczyńska H. Preparation of Enantiomeric β-(2',5'-Dimethylphenyl)Bromolactones, Their Antiproliferative Activity and Effect on Biological Membranes. Molecules 2018; 23:E3035. [PMID: 30463384 PMCID: PMC6278266 DOI: 10.3390/molecules23113035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
Three novel enantiomeric pairs of bromolactones possesing a 2,5-dimethylphenyl substituent at the β-position of the lactone ring have been synthesized from corresponding enantiomeric (E)-3-(2',5'-dimethylphenyl)hex-4-enoic acids (4) by kinetically controlled bromolactonization with N-bromosuccinimide (NBS). γ-Bromo-δ-lactones (5) were isolated as the major products. Absolute configurations of stereogenic centers of γ-bromo-δ-lactones (5) were assigned based on X-ray analysis; configurations of cis δ-bromo-γ-lactones (6) and trans δ-bromo-γ-lactones (7) were determined based on mechanism of bromolactonization. Synthesized compounds exhibited significant antiproliferative activity towards the four canine cancer cell lines (D17, CLBL-1, CLB70, and GL-1) and one human cancer line (Jurkat). Classifying the compounds in terms of activity, the most active were enantiomers of trans δ-bromo-γ-lactones (7) followed by enantiomers of cis isomer (6) and enantiomeric γ-bromo-δ-lactones (5). Higher activity was observed for all stereoisomers with S configuration at C-4 in comparison with their enantiomers with 4R configuration. Synthesized compounds did not induce hemolysis of erythrocytes. The results of the interaction of bromolactones with red blood cell membranes suggest that these compounds incorporate into biological membranes, concentrating mainly in the hydrophilic part of the bilayer but have practically no influence on fluidity in the hydrophobic region. The differences in interactions with the membrane between particular enantiomers were observed only for γ-lactones: stronger interactions were found for enantiomer 4R,5R,6S of cis γ-lactone (6) and for enantiomer 4S,5R,6S of trans γ-lactone (7).
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Angelika Sysak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Agata Białońska
- Department of Crystallography, University of Wrocław, Joliot Curie 14, 50-383 Wrocław, Poland.
| | - Marcelina Mazur
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Paweł Mituła
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq 24, 50-363 Wrocław, Poland.
| | - Gabriela Maciejewska
- Central Laboratory of the Instrumental Analysis, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Halina Kleszczyńska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
5
|
Kamizela A, Gawdzik B, Urbaniak M, Lechowicz Ł, Białońska A, Gonciarz W, Chmiela M. Synthesis, Characterization, Cytotoxicity, and Antibacterial Properties of trans-γ-Halo-δ-lactones. ChemistryOpen 2018; 7:543-550. [PMID: 30038879 PMCID: PMC6055027 DOI: 10.1002/open.201800110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
A new four-step pathway for the synthesis of γ-halo-δ-lactones is described from simple, commercially available substrates: aryl bromides and 3-methyl crotonaldehyde. The halogenolactonization reaction of β,δ-substituted, γ,δ-unsaturated carboxylic acid 4 a-c is regio- and stereoselective and gives only the trans-isomers of lactones 5 a-c, 6 a-c, and 7 a-c. The structures of all synthesized compounds were confirmed by using spectroscopic methods. For bromolactone, containing a naphthyl moiety in the structure, crystallographic analysis was also performed. The lactones were tested for their cytotoxic activity against L929 cell lines (mouse fibroblasts) and antibacterial activity against Escherichia coli strains ATCC 8739 and Staphylococcus aureus ATCC 65389. Compounds 5 a, 5 c, 7 a, and 7 b statistically significantly inhibited the metabolic activity of mouse fibroblasts L929. Compounds 5 b and 6 a were not cytotoxic towards L929 cells, but showed moderate bactericidal properties.
Collapse
Affiliation(s)
- Angelika Kamizela
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Barbara Gawdzik
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Mariusz Urbaniak
- Institute of ChemistryJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Łukasz Lechowicz
- Institute of BiologyJan Kochanowski UniversityŚwiętokrzyska 15 G25–406KielcePoland
| | - Agata Białońska
- Department of ChemistryUniversity of WroclawF. Joliot-Curie 1450–383WrocławPoland
| | - Weronika Gonciarz
- Dept. of Immunology and Infectious BiologyUniversity of LódzBanacha 12/1690–237ŁódźPoland
| | - Magdalena Chmiela
- Dept. of Immunology and Infectious BiologyUniversity of LódzBanacha 12/1690–237ŁódźPoland
| |
Collapse
|
6
|
Pawlak A, Gładkowski W, Kutkowska J, Mazur M, Obmińska-Mrukowicz B, Rapak A. Enantiomeric trans β-aryl-δ-iodo-γ-lactones derived from 2,5-dimethylbenzaldehyde induce apoptosis in canine lymphoma cell lines by downregulation of anti-apoptotic Bcl-2 family members Bcl-xL and Bcl-2. Bioorg Med Chem Lett 2018. [PMID: 29534928 DOI: 10.1016/j.bmcl.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
For many years, studies focused on developing new natural or synthetic compounds with antineoplastic activity have attracted the attention of researchers. An interesting group of such compounds seem to be those with both lactone moiety and an aromatic ring which, in addition to antimicrobial or antiviral activity, also exhibit antitumor properties. The study shows antitumor activity of two enantiomeric trans isomers of 5-(1-iodoethyl)-4-(2',5'-dimethylphenyl)dihydrofuran-2-one. Our aim was to determine their antitumor activity manifested as an ability to induce apoptosis in selected canine cancer cell lines as well as to evaluate differences in their strength depending on the configuration of their stereogenic centers. The enantiomers (+)-(4R,5S,6R)-1 and (-)-(4S,5R,6S)-2 were found to induce classical caspase-dependent apoptosis through downregulation of the expression of anti-apoptotic proteins Bcl-xL and Bcl-2. Although the mechanism of apoptosis induction was the same for both enantiomers, they differed in their strength, as stronger antineoplastic activity in vitro was exhibited by isomer (+)-(4R,5S,6R)-1.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Witold Gładkowski
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Weigla 12, 53-114 Wroclaw, Poland.
| | - Marcelina Mazur
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
7
|
Li C, Chen H, Li J, Li M, Liao J, Wu W, Jiang H. Palladium-Catalyzed Regioselective Aerobic Allylic C−H Oxygenation: Direct Synthesis of α,β
-Unsaturated Aldehydes and Allylic Alcohols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Huoji Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Jianhua Liao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
8
|
Azeredo NF, Souza FP, Demidoff FC, Netto CD, Resende JA, Franco RW, Colepicolo P, Ferreira AM, Fernandes C. New strategies for the synthesis of naphthoquinones employing Cu(II) complexes: Crystal structures and cytotoxicity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Pawlak A, Gładkowski W, Mazur M, Henklewska M, Obmińska-Mrukowicz B, Rapak A. Optically active stereoisomers of 5-(1-iodoethyl)-4-(4'-isopropylphenyl)dihydrofuran-2-one: The effect of the configuration of stereocenters on apoptosis induction in canine cancer cell lines. Chem Biol Interact 2016; 261:18-26. [PMID: 27867085 DOI: 10.1016/j.cbi.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Four stereoisomers of δ-iodo-γ-lactones with p-isopropylphenyl substituent at β-position: cis-(4R,5R,6S)-1, cis-(4S,5S,6R)-2, trans-(4R,5S,6R)-3, trans-(4S,5R,6S)-4 with proved antiproliferative activity were subjected to in vitro tests for a better understanding of their anticancer activity. The subject of our interest was a possible relationship between a configuration of chiral centers of the studied lactones and their anticancer potency against a panel of canine cell lines representing hematopoietic (CLBL-1, GL-1, CL-1, CLB70) and mammary gland cancers (P114, CMT-U27, CMT-U309). To determine the anticancer activity of the tested compounds, cell viability and cell metabolic activity were checked using propidium iodide staining and the MTT test. To determine whether the studied compounds cause necrotic or apoptotic cell death, two assays for apoptosis evaluation were performed, annexin V staining and detection of caspase 3/7 activation. Simultaneously, the effects of the compounds on the cell cycle were also examined. The conducted research confirmed the anticancer potential of the tested lactones against canine cancers. The investigated isomers exerted higher activity against canine lymphoma/leukemia cell lines than against mammary tumors, whereas the configuration of stereogenic centers of the examined compounds affected their activity. It has been shown that stereoisomers with 4S configuration (2,4) were more active, and the most potent one was the cis-(4S,5S,6R)-2 isomer. The investigated lactones seemed to initiate the process of apoptosis rather than acting as typical cytostatic agents, as cell death via apoptosis, and no increase in G2-M population in the cell cycle analysis were observed. The presented study demonstrated that all four stereoisomers of δ-iodo-γ-lactones with p-isopropylphenyl substituent at β-position induced apoptosis via a mitochondrial-mediated, caspase-dependent pathway.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Witold Gładkowski
- Department of Chemistry, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Marcelina Mazur
- Department of Chemistry, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Marta Henklewska
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Bożena Obmińska-Mrukowicz
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
10
|
Koszelewski D, Brodzka A, Żądło A, Paprocki D, Trzepizur D, Zysk M, Ostaszewski R. Dynamic Kinetic Resolution of 3-Aryl-4-pentenoic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Żądło
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Damian Trzepizur
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Małgorzata Zysk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Chiral δ-iodo-γ-lactones derived from cuminaldehyde, 2,5-dimethylbenzaldehyde and piperonal: chemoenzymatic synthesis and antiproliferative activity. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Gładkowski W, Skrobiszewski A, Mazur M, Siepka M, Białońska A. Convenient Chemoenzymatic Route to Optically Active β-Aryl-δ-iodo-γ-lactones and β-Aryl-γ-iodo-δ-lactones with the Defined Configurations of Stereogenic Centers. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Gładkowski W, Skrobiszewski A, Mazur M, Siepka M, Pawlak A, Obmińska-Mrukowicz B, Białońska A, Poradowski D, Drynda A, Urbaniak M. Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.09.094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|