1
|
Xie L, Guo R, Yang L, Ozaki Y, Noda I, Xu Y, Huang K. A new approach to recognizing the correct pattern of cross-peaks from a noisy 2D asynchronous spectrum by detecting intrinsic symmetry via the Kolmogorov-Smirnov test. Phys Chem Chem Phys 2023; 25:12863-12871. [PMID: 37165857 DOI: 10.1039/d2cp05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The characteristic cluster pattern of cross-peaks in a 2D asynchronous spectrum provides an effective way to reveal the specific physicochemical nature of subtle spectral changes caused by intermolecular interactions. However, the inevitable presence of noise in the 1D spectra used to construct a 2D asynchronous spectrum is significantly amplified, which poses a serious challenge in identifying the correct cluster pattern of the cross-peaks. While mirror symmetry occurs in some types of cross-peaks, it does not occur in other types. The Kolmogorov-Smirnov test provides a statistical means to check whether the mirror symmetry exists or not between a pair of cross-peaks covered by heavy noise. Thus, different types of cross-peak clusters can be distinguished by excavating intrinsic spectral features from the noisy 2D asynchronous spectrum. The effectiveness of this approach in investigating the nature of intermolecular interactions was showcased in both a simulated model system and a real artemisinin/N-methyl pyrrolidone system.
Collapse
Affiliation(s)
- Linchen Xie
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing CKC, PerkinElmer Inc., Beijing 100015, P. R. China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kun Huang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
He AQ, Yu ZQ, Song J, Yang LM, Xu YZ, Noda I, Ozaki Y. Novel Method for Extracting the Spectrum of a Supramolecular Complex via a Comprehensive Approach Involving Two-Dimensional Correlation Spectroscopy, Genetic Algorithm, and Grid Searching. Anal Chem 2022; 94:2348-2355. [PMID: 35041394 DOI: 10.1021/acs.analchem.1c05209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A supramolecular complex may be formed by two solutes via a weak intermolecular interaction in a solution. The spectrum of the complex is often inundated by the spectra of the solutes that are not involved in the intermolecular interaction. Herein, a novel spectral analysis approach is proposed to retrieve the spectrum of the supramolecular complex. First, a two-dimensional (2D) asynchronous spectrum is constructed. Then, a genetic algorithm is used to obtain a heuristic spectrum of the supramolecular complex. The heuristic spectrum is a linear combination of the spectrum of the complex and the spectrum of a solute. The coefficients of the linear combination are then obtained, according to which the equilibrium constants are invariant among the sample solutions used to construct the 2D asynchronous spectrum. We have applied the approach to a supramolecular system formed by benzene and I2. In the analysis, several binding models are evaluated, and a benzene molecule interacting with two iodine molecules via halogen bonding turns out to be the only possible model. Hence, the characteristic band of the benzene/I2 supramolecular complex around 1819 cm-1 in the Fourier transform infrared (FTIR) spectrum and the corresponding equilibrium constant are obtained. The above results indicate that the novel approach provides a chance to get new insight into various intermolecular interactions studied by spectroscopy.
Collapse
Affiliation(s)
- An-Qi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
3
|
He AQ, Li Q, Yu ZQ, Tian J, Song J, Feng J, Xu YZ, Noda I, Ozaki Y. Investigation on the luminescence behavior of terbium acetylsalicylate/bilirubin system via 2D-COS approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119427. [PMID: 33461134 DOI: 10.1016/j.saa.2021.119427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Terbium acetylsalicylate has been prepared, and the ethanol solution of the complex exhibits strong luminescence under the excitation of ultraviolet radiation. When a small amount of bilirubin solution is introduced into the solution containing a high concentration of terbium acetylsalicylate, a remarkable diminution of the luminescence of the terbium complex was observed. Investigations on the behavior and life-time of luminescence indicate that the quenching is not caused by forming a stable non-luminescent product via a reaction between terbium acetylsalicylate and bilirubin. A π-π interaction between the chromophore of bilirubin and the aromatic moiety of ligand was revealed via the pattern of cross peaks in the 2D asynchronous spectrum generated using the DAOSD (double asynchronous orthogonal sample design) approach. Such an interaction paves a route for energy transfer in the quenching process. The combination of a high concentration of the terbium complex and a long life-time of luminescence in the lanthanide complex/bilirubin system forms a special scenario: a bilirubin molecule by diffusion may visit and deactivate dozens of excited terbium complexes within the half-life period of the lanthanide complex. This is why a small amount of bilirubin can bring about the significant reduction of luminescence on the solution containing a high concentration of the terbium complex.
Collapse
Affiliation(s)
- An-Qi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Li
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jing Tian
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan 610054, PR China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan 610054, PR China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
4
|
Li K, Zhou F, He A, Guo R, Li X, Xu Y, Noda I, Ozaki Y, Wu J. Intensity Enhancement of a Two-Dimensional Asynchronous Spectrum Without Noise Level Fluctuation Escalation Using a One-Dimensional Spectra Sequence Change. APPLIED SPECTROSCOPY 2021; 75:422-433. [PMID: 33103490 DOI: 10.1177/0003702820971714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previously, we demonstrated that the intensities of cross-peaks in a two-dimensional asynchronous spectrum could be enhanced using sequence change of the corresponding one-dimensional spectra. This unusual approach becomes useful when the determination of the sequential order of physicochemical events is not essential. However, it was not known whether the level of noise in the two-dimensional asynchronous spectrum was also escalated as the sequence of one-dimensional spectra changed. We first investigated the noise behavior in a two-dimensional asynchronous spectrum upon changing the sequence of the corresponding one-dimensional spectra on a model system. In the model system, bilinear data from a chromatographic-spectroscopic experiment on a mixture containing two components were analyzed using a two-dimensional asynchronous spectrum. The computer simulation results confirm that the cross-peak intensities in the resultant a two-dimensional asynchronous spectrum were indeed enhanced by more than 100 times as the sequence of one-dimensional spectra changed, whereas the fluctuation level of noise, reflected by the standard deviation of the value of a two-dimensional asynchronous spectrum at a given point, was almost invariant. Further analysis on the model system demonstrated that the special mathematical property of the Hilbert-Noda matrix (the modules of all column vectors of the Hilbert-Noda matrix being a near constant) accounts for the moderate variation of the noise level during the changes of the sequence of one-dimensional spectra. Next, a realistic example from a thermogravimetry-Fourier transform infrared spectroscopy experiment with added artificial noise in seven one-dimensional spectra was studied. As we altered the sequence of the seven FT-IR spectra, the variation of the cross-peak intensities covered four orders of magnitude in the two-dimensional asynchronous spectra. In contrast, the fluctuation of noise in the two-dimensional asynchronous spectra was within two times. The above results clearly demonstrate that a change in the sequence of one-dimensional spectra is an effective way to improve the signal-to-noise level of the two-dimensional asynchronous spectra.
Collapse
Affiliation(s)
- Kaili Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Jiangsu JITRI Molecular Engineering Inst. Co., Ltd, Suzhou, China
| | - Xiaopei Li
- Instrumental Analysis Center, 12400Dalian Polytechnic University, Dalian, China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Jiangsu JITRI Molecular Engineering Inst. Co., Ltd, Suzhou, China
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Department of Chemistry, School of Science and Technology, 12907Kwansei Gakuin University, Hyogo, Japan
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Guo R, Li GX, Ling XF, Noda I, Xu Y. Investigation on the interaction between theophylline and alkaline substances using the DAOSD approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Bao YN, Zeng YW, Guo R, Ablikim M, Shi HF, Yang LM, Yang ZL, Xu YZ, Noda I, Wu JG. Two-dimensional correlation spectroscopic studies on coordination between organic ligands and Ni 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:126-132. [PMID: 29449087 DOI: 10.1016/j.saa.2017.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
3A2g→3T1g(P) transition band of Ni2+ is used to probe the coordination of Ni2+. Two-dimensional asynchronous spectra (2DCOS) are generated using the Double Asynchronous Orthogonal Sample Design (DAOSD), Asynchronous Spectrum with Auxiliary Peaks (ASAP) and Two-Trace Two-Dimensional (2T2D) approaches. Cross peaks relevant to the 3A2g→3T1g(P) transition band of Ni2+ are utilized to probe coordination between Ni2+ and various ligands. We studied the spectral behavior of the 3A2g→3T1g(P) transition band when Ni2+ is coordinated with ethylenediaminetetraacetic acid disodium salt (EDTA). The pattern of cross peaks in 2D asynchronous spectrum demonstrates that coordination brings about significant blue shift of the band. In addition, the absorptivity of the band increases remarkably. The interaction between Ni2+ and galactitol is also investigated. Although no clearly observable change is found on the 3A2g→3T1g(P) transition band when galactitol is introduced, the appearance of cross peak in 2D asynchronous spectrum demonstrates that coordination indeed occurs between Ni2+ and galactitol. Furthermore, the pattern of cross peak indicates that peak position, bandwidth and absorptivity of the 3A2g→3T1g(P) transition band of Ni(galactitol)x2+ is considerably different from those of Ni(H2O)62+. Thus, 2DCOS is helpful to reveal subtle spectral variation, which might be helpful in shedding light on the physical-chemical nature of coordination.
Collapse
Affiliation(s)
- Ya-Nan Bao
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, PR China
| | - Yi-Wei Zeng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Mesude Ablikim
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Hai-Fang Shi
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, PR China.
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Zhan-Lan Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Jin-Guang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
7
|
He A, Zeng Y, Kang X, Morita S, Xu Y, Noda I, Ozaki Y, Wu J. Novel Method of Constructing Two-Dimensional Correlation Spectroscopy without Subtracting a Reference Spectrum. J Phys Chem A 2018; 122:788-797. [DOI: 10.1021/acs.jpca.7b10710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anqi He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Company, Ltd., Ninhai, 315602, China
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Yiwei Zeng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoyan Kang
- Institute
of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Shigeaki Morita
- Department
of Engineering Science, Osaka Electro-Communication University, Osaka, 572-8530, Japan
| | - Yizhuang Xu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Company, Ltd., Ninhai, 315602, China
| | - Isao Noda
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department
of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Institute
of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Jinguang Wu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
8
|
He A, Kang X, Xu Y, Noda I, Ozaki Y, Wu J. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:343-348. [PMID: 28601038 DOI: 10.1016/j.saa.2017.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD.
Collapse
Affiliation(s)
- Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Material Co, Ltd., Ninghai 315602, PR China; Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Xiaoyan Kang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Material Co, Ltd., Ninghai 315602, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
9
|
He A, Zeng X, Xu Y, Noda I, Ozaki Y, Wu J. Investigation on the Behavior of Noise in Asynchronous Spectra in Generalized Two-Dimensional (2D) Correlation Spectroscopy and Application of Butterworth Filter in the Improvement of Signal-to-Noise Ratio of 2D Asynchronous Spectra. J Phys Chem A 2017; 121:7524-7533. [DOI: 10.1021/acs.jpca.7b06621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anqi He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Co, Ltd., Ninhai 315602, China
- Department
of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Xianzhe Zeng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School
of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yizhuang Xu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Co, Ltd., Ninhai 315602, China
| | - Isao Noda
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department
of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School
of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jinguang Wu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Zhang J, Guo R, He A, Weng S, Gao X, Xu Y, Noda I, Wu J. Investigation on the relationship between solubility of artemisinin and polyvinylpyrroli done addition by using DAOSD approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:136-142. [PMID: 28414978 DOI: 10.1016/j.saa.2017.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
In this work, we investigated the influence of polyvinylpyrrolidone (PVP) on the solubility of artemisinin in aqueous solution by using quantitative 1H NMR. Experimental results demonstrate that about 4 times of incremental increase occurs on the solubility of artemisinin upon introducing PVP. In addition, dipole-dipole interaction between the ester group of artemisinin and the amide group of N-methylpyrrolidone (NMP), a model compound of PVP, is characterized by two-dimensional (2D) correlation FTIR spectroscopy with the DAOSD (Double Asynchronous Orthogonal Sample Design) approach developed in our previous work. The observation of cross peaks in a pair of 2D asynchronous spectra suggests that dipole-dipole interaction indeed occurs between the ester group of artemisinin and amide group of NMP. Moreover, the pattern of cross peaks indicates that the carbonyl band of artemisinin undergoes blue-shift while the bandwidth and absorptivity increases via interaction with NMP, and the amide band of NMP undergoes blue-shift while the absorptivity increases via interaction with artemisinin. Dipole-dipole interaction, as one of the strongest intermolecular interaction between artemisinin and excipient, may play an important role in the enhancement of the solubility of artemisinin in aqueous solution.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Materials Co., Ltd., Ninghai 315602, PR China
| | - Shifu Weng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xiuxiang Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Materials Co., Ltd., Ninghai 315602, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
11
|
|
12
|
Kang X, He A, Guo R, Chen J, Zhai Y, Xu Y, Noda I, Wu J. Investigation on intermolecular interaction between two solutes where one solute occurs in two states. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Investigation on the spectral properties of 2D asynchronous fluorescence spectra generated by using variable excitation wavelengths as a perturbation. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Investigation on the intermolecular interaction between diethyl ether and dichloromethane in gaseous phase by using the DAOSD approach. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
A simplified concentration series to produce a pair of 2D asynchronous spectra based on the DAOSD approach. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Shi J, Liu Y, Guo R, Li X, He A, Gao Y, Wei Y, Liu C, Zhao Y, Xu Y, Noda I, Wu J. Design of a New Concentration Series for the Orthogonal Sample Design Approach and Estimation of the Number of Reactions in Chemical Systems. APPLIED SPECTROSCOPY 2015; 69:1229-1242. [PMID: 26647046 DOI: 10.1366/14-07759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new concentration series is proposed for the construction of a two-dimensional (2D) synchronous spectrum for orthogonal sample design analysis to probe intermolecular interaction between solutes dissolved in the same solutions. The obtained 2D synchronous spectrum possesses the following two properties: (1) cross peaks in the 2D synchronous spectra can be used to reflect intermolecular interaction reliably, since interference portions that have nothing to do with intermolecular interaction are completely removed, and (2) the two-dimensional synchronous spectrum produced can effectively avoid accidental collinearity. Hence, the correct number of nonzero eigenvalues can be obtained so that the number of chemical reactions can be estimated. In a real chemical system, noise present in one-dimensional spectra may also produce nonzero eigenvalues. To get the correct number of chemical reactions, we classified nonzero eigenvalues into significant nonzero eigenvalues and insignificant nonzero eigenvalues. Significant nonzero eigenvalues can be identified by inspecting the pattern of the corresponding eigenvector with help of the Durbin-Watson statistic. As a result, the correct number of chemical reactions can be obtained from significant nonzero eigenvalues. This approach provides a solid basis to obtain insight into subtle spectral variations caused by intermolecular interaction.
Collapse
Affiliation(s)
- Jiajia Shi
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao DQ, Li XP, Shi JJ, Kang XY, Kang TG, Xia JM, Ling XF, Weng SF, Xu YZ, Noda I, Wu JG. Two-dimensional correlation spectroscopic studies on coordination between carbonyl group of butanone and metal ions. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Li X, He A, Huang K, Liu H, Zhao Y, Wei Y, Xu Y, Noda I, Wu J. Two-dimensional asynchronous spectrum with auxiliary cross peaks in probing intermolecular interactions. RSC Adv 2015. [DOI: 10.1039/c5ra16062f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A new approach called “asynchronous spectrum with auxiliary peaks (ASAP)” is proposed for generating a 2D asynchronous spectrum to investigate the intermolecular interaction between two solutes (P and Q) dissolved in the same solution.
Collapse
Affiliation(s)
- Xiaopei Li
- Institute of Process Engineering
- Chinese Academy of Sciences
- P. R. China
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Rare Earth Materials Chemistry and Applications
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Kun Huang
- Institute of Process Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Huizhou Liu
- Institute of Process Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Ying Zhao
- Institute of Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Yongju Wei
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|