1
|
Tageldin A, Omolo CA, Nyandoro VO, Elhassan E, Kassam SZF, Peters XQ, Govender T. Engineering dynamic covalent bond-based nanosystems for delivery of antimicrobials against bacterial infections. J Control Release 2024; 371:237-257. [PMID: 38815705 DOI: 10.1016/j.jconrel.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.
Collapse
Affiliation(s)
- Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
2
|
Synthesis and photophysical properties of tricyclic boron compounds. Experimental and theoretical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Wang L, Hou X, Fang H, Yang X. Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition. Curr Med Chem 2021; 29:2476-2489. [PMID: 34473614 DOI: 10.2174/0929867328666210902101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Given the crucial association of hydrogen peroxide with a wide-range of human diseases, this compound has currently earned the reputation of being popular biomolecular target. Although various of analytical methods have attracted our attention, fluorescent probes have been used as prominent tools to determine H2O2 to reflect the physiological and pathological conditions of biological systems, As the sensitive responsive portion of these probes, Boronate ester and boronic acid groups are vital reporter as the sensitive responsive part for H2O2 recognition. In this review, we summarized boronate ester/boronic acid group-based fluorescent probes for H2O2 reported from 2012 to 2020 and generally classify the fluorophores into six categories to exhaustively elaborate the design strategy and comprehensive systematic performance. We hope that this review will inspire the exploration of new fluorescent probes based on boronate ester/boronic acid groups for detection of H2O2 and other relevant analytes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xuben Hou
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Hao Fang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xinying Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| |
Collapse
|
4
|
Gozdalik JT, Adamczyk-Woźniak A, Sporzyński A. Influence of fluorine substituents on the properties of phenylboronic compounds. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-1009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Rapid development of research on the chemistry of boronic acids is connected with their applications in organic synthesis, analytical chemistry, materials’ chemistry, biology and medicine. In many applications Lewis acidity of boron atoms plays an important role. Special group of arylboronic acids are fluoro-substituted compounds, in which the electron withdrawing character of fluorine atoms influences their properties. The present paper deals with fluoro-substituted boronic acids and their derivatives: esters, benzoxaboroles and boroxines. Properties of these compounds, i.e. acidity, hydrolytic stability, structures in crystals and in solution as well as spectroscopic properties are discussed. In the next part examples of important applications are given.
Collapse
Affiliation(s)
- Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | | | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| |
Collapse
|
5
|
Sánchez-Portillo P, Barba V. Bis-Imine Boronic Esters Obtained by One-Step Multicomponent Reactions. Synthesis and X-Ray Diffraction Structural Analysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201702465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paola Sánchez-Portillo
- Centro de Investigaciones Químicas-IICBA; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos México
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBA; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos México
| |
Collapse
|
6
|
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|