1
|
Gong W, Wang ML, Liu Y, Yu DG, Bligh SWA. Shell Distribution of Vitamin K3 within Reinforced Electrospun Nanofibers for Improved Photo-Antibacterial Performance. Int J Mol Sci 2024; 25:9556. [PMID: 39273503 PMCID: PMC11394794 DOI: 10.3390/ijms25179556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Personal protective equipment (PPE) has attracted more attention since the outbreak of the epidemic in 2019. Advanced nano techniques, such as electrospinning, can provide new routes for developing novel PPE. However, electrospun antibacterial PPE is not easily obtained. Fibers loaded with photosensitizers prepared using single-fluid electrospinning have a relatively low utilization rate due to the influence of embedding and their inadequate mechanical properties. For this study, monolithic nanofibers and core-shell nanofibers were prepared and compared. Monolithic F1 fibers comprising polyethylene oxide (PEO), poly(vinyl alcohol-co-ethylene) (PVA-co-PE), and the photo-antibacterial agent vitamin K3 (VK3) were created using a single-fluid blending process. Core-shell F2 nanofibers were prepared using coaxial electrospinning, in which the extensible material PEO was set as the core section, and a composite consisting of PEO, PVA-co-PE, and VK3 was set as the shell section. Both F1 and F2 fibers with the designed structural properties had an average diameter of approximately 1.0 μm, as determined using scanning electron microscopy and transmission electron microscopy. VK3 was amorphously dispersed within the polymeric matrices of F1 and F2 fibers in a compatible manner, as revealed using X-ray diffraction and Fourier transform infrared spectroscopy. Monolithic F1 fibers had a higher tensile strength of 2.917 ± 0.091 MPa, whereas the core-shell F2 fibers had a longer elongation with a break rate of 194.567 ± 0.091%. Photoreaction tests showed that, with their adjustment, core-shell F2 nanofibers could produce 0.222 μmol/L ·OH upon illumination. F2 fibers had slightly better antibacterial performance than F1 fibers, with inhibition zones of 1.361 ± 0.012 cm and 1.296 ± 0.022 cm for E. coli and S. aureus, respectively, but with less VK3. The intentional tailoring of the components and compositions of the core-shell nanostructures can improve the process-structure-performance relationship of electrospun nanofibers for potential sunlight-activated antibacterial PPE.
Collapse
Affiliation(s)
- Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng-Long Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
2
|
Novel vitamin K3 analogs containing 3-N-substituted aromatic and piperazine rings with selective in vitro anticancer activity against HeLa, U87 MG, and MCF-7 cells. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
de Souza AS, Ribeiro RCB, Costa DCS, Pauli FP, Pinho DR, de Moraes MG, da Silva FDC, Forezi LDSM, Ferreira VF. Menadione: a platform and a target to valuable compounds synthesis. Beilstein J Org Chem 2022; 18:381-419. [PMID: 35529893 PMCID: PMC9039524 DOI: 10.3762/bjoc.18.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/26/2023] Open
Abstract
Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Dora C S Costa
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| |
Collapse
|
4
|
Harihar S, Mone N, Satpute SK, Chadar D, Chakravarty D, Weyhermüller T, Butcher RJ, Salunke-Gawali S. Metal complexes of a pro-vitamin K3 analog phthiocol (2-hydroxy-3-methylnaphthalene-1,4-dione): synthesis, characterization, and anticancer activity. Dalton Trans 2022; 51:17338-17353. [DOI: 10.1039/d2dt02748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer activity of geometrical isomers of phthiocol complexes are evaluated against MCF-7 and A549 cell lines.
Collapse
Affiliation(s)
- Shital Harihar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Dattatray Chadar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Debamitra Chakravarty
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Thomas Weyhermüller
- MPI für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, D.C., 20059, USA
| | | |
Collapse
|
5
|
Patil R, Jadhav M, Salunke-Gawali S, Lande DN, Gejji SP, Chakravarty D. 1H and 13C NMR chemical shifts of 2- n-alkylamino-naphthalene-1,4-diones. Heliyon 2021; 7:e06044. [PMID: 33553738 PMCID: PMC7848645 DOI: 10.1016/j.heliyon.2021.e06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 01/18/2021] [Indexed: 10/25/2022] Open
Abstract
1H as well as 13C chemical shifts of 32 compounds of C (3) substituted 2-(n-alkylamino)-3R-naphthalene-1,4-dione (where n-alkyl: methyl, to octyl, R = H, Cl, Br, and CH3) are investigated through 1H, 13C, DEPT, gDQCOSY, and gHSQCAD NMR experiments and M06-2X/6-311++G (d,p) density functional theory are discussed. Single crystal X-ray structure of Br-3, as well as 18 different derivatives of naphthalene-1,4-diones, are revealed for its inter and intra-molecular hydrogen bonding interactions.
Collapse
Affiliation(s)
- Rishikesh Patil
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Mahesh Jadhav
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Sunita Salunke-Gawali
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Dipali N Lande
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Debamitra Chakravarty
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| |
Collapse
|
6
|
Braasch-Turi M, Crans DC. Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules 2020; 25:molecules25194477. [PMID: 33003459 PMCID: PMC7582351 DOI: 10.3390/molecules25194477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
Collapse
Affiliation(s)
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Ft. Collins, CO 80525, USA;
- Cell & Molecular Biology Program, Colorado State University, Ft. Collins, CO 80525, USA
- Correspondence:
| |
Collapse
|
7
|
Van Cleave C, Murakami HA, Samart N, Koehn JT, Maldonado P, Kreckel HD, Cope EJ, Basile A, Crick DC, Crans DC. Location of menaquinone and menaquinol headgroups in model membranes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Menaquinones are lipoquinones that consist of a headgroup (naphthoquinone, menadione) and an isoprenyl sidechain. They function as electron transporters in prokaryotes such as Mycobacterium tuberculosis. For these studies, we used Langmuir monolayers and microemulsions to investigate how the menaquinone headgroup (menadione) and the menahydroquinone headgroup (menadiol) interact with model membrane interfaces to determine if differences are observed in the location of these headgroups in a membrane. It has been suggested that the differences in the locations are mainly caused by the isoprenyl sidechain rather than the headgroup quinone-to-quinol reduction during electron transport. This study presents evidence that suggests the influence of the headgroup drives the movement of the oxidized quinone and the reduced hydroquinone to different locations within the interface. Utilizing the model membranes of microemulsions and Langmuir monolayers, it is determined whether or not there is a difference in the location of menadione and menadiol within the interface. Based on our findings, we conclude that the menadione and menadiol may reside in different locations within model membranes. It follows that if menaquinone moves within the cell membrane upon menaquinol formation, it is due at least in part, to the differences in the properties of headgroup interactions with the membrane in addition to the isoprenyl sidechain.
Collapse
Affiliation(s)
- Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heide A. Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuttaporn Samart
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemistry, Rajabhat Rajanagarindra University, Chachoengsao, Thailand
| | - Jordan T. Koehn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Pablo Maldonado
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heidi D. Kreckel
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Elana J. Cope
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrea Basile
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Hesabi N, Ebrahimi A. The electrochemical properties and PIM1 kinase enzyme inhibition of some 2-(hydroxy phenyl amino) naphthalene-1,4-dione derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Experimental solubility data of two solid derivatives of menadione in supercritical carbon dioxide: 2-((4-chlorobenzyl)amino)-3-methylnaphtalene-1,4-dione, and 2-((4-chlorophenethyl)amino)-3-methylnaphtalene-1,4-dione. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.104707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Choudhari D, Salunke-Gawali S, Chakravarty D, Shaikh SR, Lande DN, Gejji SP, Rao PK, Satpute S, Puranik VG, Gonnade R. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. NEW J CHEM 2020. [DOI: 10.1039/c9nj04339j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and development of drugs in multi-drug resistant (MDR) infections have been of growing interest. The syntheses, structural studies, antibacterial and antifungal activities of imidazole-based 1,4-naphthoquinones are studied in this investigation.
Collapse
Affiliation(s)
- Dinkar Choudhari
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | | | - Samir R. Shaikh
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Pradeep Kumar Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Surekha Satpute
- Department of Microbiology
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Vedavati G. Puranik
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Rajesh Gonnade
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
11
|
Chadar D, Lande DN, Gejji SP, Nikalje MD, Chakravarty D, Salunke-Gawali S. Trimerization of Vitamin K3: Molecular structure and density functional theoretic investigations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
n-alkylamino analogs of Vitamin K3: Electrochemical, DFT and anticancer activity of their oxidized and one electron reduced form. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Koehn JT, Beuning CN, Peters BJ, Dellinger SK, Van Cleave C, Crick DC, Crans DC. Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. Biochemistry 2019; 58:1596-1615. [DOI: 10.1021/acs.biochem.9b00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Fei Z, Chen F, Zhong M, Qiu J, Li W, Sadeghzadeh SM. Synthesis and characterization of a novel ruthenium(ii) trisbipyridine complex magnetic nanocomposite for the selective oxidation of phenols. RSC Adv 2019; 9:28078-28088. [PMID: 35530489 PMCID: PMC9070753 DOI: 10.1039/c9ra05079e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anchoring ruthenium(ii) trisbipyridine complex [Ru(Bpy)3]2+ into a magnetic dendritic fibrous silica nanostructure produces an unprecedented strong nanocatalyst, FeNi3/DFNS/[Ru(Bpy)3]2+.
Collapse
Affiliation(s)
- Zhengxin Fei
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
- Jinhua Polytechnic
| | - Feng Chen
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Mingqiang Zhong
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | | | - Weidong Li
- Polytechnic Institute of Qianjiang College
- Hangzhou Normal University
- Hangzhou
- China
| | - Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| |
Collapse
|
15
|
Choudhari D, Lande DN, Chakravarty D, Gejji SP, Das P, Pardesi KR, Satpute S, Salunke-Gawali S. Reactions of 2,3-dichloro-1,4-naphthoquinone with aminophenols: evidence for hydroxy benzophenoxazine intermediate and antibacterial activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Koehn J, Crick DC, Crans DC. Synthesis and Characterization of Partially and Fully Saturated Menaquinone Derivatives. ACS OMEGA 2018; 3:14889-14901. [PMID: 31458155 PMCID: PMC6643618 DOI: 10.1021/acsomega.8b02620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 05/08/2023]
Abstract
Menaquinones (MKs) contain both a redox active quinone moiety and a hydrophobic repeating isoprenyl side chain of varying lengths and degrees of saturation. This characteristic structure allows MKs to play a key role in the respiratory electron transport system of some prokaryotes by shuttling electrons and protons between membrane-bound protein complexes, which act as electron acceptors and donors. Hydrophobic MK molecules with partially and fully saturated isoprenyl side chains are found in a wide range of eubacteria and archaea, and the structural variations of the MK analogues are evolutionarily conserved but poorly understood. For example, Mycobacterium tuberculosis, the causative agent of tuberculosis, uses predominantly MK-9(II-H2) (saturated at the second isoprene unit) as its electron carrier and depends on the synthesis of MK-9(II-H2) for survival in host macrophages. Thus, MKs with partially saturated isoprenyl side chains may represent a novel virulence factor. Naturally occurring longer MKs are very hydrophobic, whereas MK analogues that have a truncated (i.e., one to three isoprenes) isoprenyl side chain are less hydrophobic. This improves their solubility in aqueous solutions, allowing rigorous study of their structure and biological activity. We present the synthesis and characterization of two partially saturated MK analogues, MK-2(II-H2) and MK-3(II-H2), and two novel fully saturated MK derivatives, MK-2(I,II-H4) and MK-3(I,II,III-H6).
Collapse
Affiliation(s)
- Jordan
T. Koehn
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Dean C. Crick
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Debbie C. Crans
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Koehn J, Magallanes ES, Peters BJ, Beuning CN, Haase AA, Zhu MJ, Rithner CD, Crick DC, Crans DC. A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and at a Model Membrane Interface. J Org Chem 2018; 83:275-288. [PMID: 29168636 PMCID: PMC5759649 DOI: 10.1021/acs.joc.7b02649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/29/2022]
Abstract
Menaquinones (naphthoquinones, MK) are isoprenoids that play key roles in the respiratory electron transport system of some prokaryotes by shuttling electrons between membrane-bound protein complexes acting as electron acceptors and donors. Menaquinone-2 (MK-2), a truncated MK, was synthesized, and the studies presented herein characterize the conformational and chemical properties of the hydrophobic MK-2 molecule. Using 2D NMR spectroscopy, we established for the first time that MK-2 has a folded conformation defined by the isoprenyl side-chain folding back over the napthoquinone in a U-shape, which depends on the specific environmental conditions found in different solvents. We used molecular mechanics to illustrate conformations found by the NMR experiments. The measured redox potentials of MK-2 differed in three organic solvents, where MK-2 was most easily reduced in DMSO, which may suggest a combination of solvent effect (presumably in part because of differences in dielectric constants) and/or conformational differences of MK-2 in different organic solvents. Furthermore, MK-2 was found to associate with the interface of model membranes represented by Langmuir phospholipid monolayers and Aerosol-OT (AOT) reverse micelles. MK-2 adopts a slightly different U-shaped conformation within reverse micelles compared to within solution, which is in sharp contrast to the extended conformations illustrated in literature for MKs.
Collapse
Affiliation(s)
- Jordan
T. Koehn
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Estela S. Magallanes
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Benjamin J. Peters
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Cheryle N. Beuning
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Allison A. Haase
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Michelle J. Zhu
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Rithner
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Dean C. Crick
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Debbie C. Crans
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
18
|
|
19
|
Zacconi FC, Cabrera AL, Ordoñez-Retamales F, del Valle JM, de la Fuente JC. Isothermal solubility in supercritical carbon dioxide of solid derivatives of 2,3-dichloronaphthalene-1,4-dione (dichlone): 2-(Benzylamino)-3-chloronaphthalene-1,4-dione and 2-chloro-3-(phenethylamino)naphthalene-1,4-dione. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Molecular structures and biological activities of (N)- n -alkylammonium 2-chloro-3-oxido-1,4-naphthoquinone salts. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Patil A, Lande DN, Nalkar A, Gejji SP, Chakrovorty D, Gonnade R, Moniz T, Rangel M, Pereira E, Salunke-Gawali S. Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Patil R, Bhand S, Konkimalla VB, Banerjee P, Ugale B, Chadar D, Saha SK, Praharaj PP, Nagaraja C, Chakrovarty D, Salunke-Gawali S. Molecular association of 2-( n -alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Polymorphism in chloro derivatives of 1,4-naphthoquinone: Experiment and density functional theoretic investigations. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Agarwal G, Lande DN, Chakrovarty D, Gejji SP, Gosavi-Mirkute P, Patil A, Salunke-Gawali S. Bromine substituted aminonaphthoquinones: synthesis, characterization, DFT and metal ion binding studies. RSC Adv 2016. [DOI: 10.1039/c6ra20970j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bromine substituted aminonaphthoquinones – chemosensors for metal ions.
Collapse
Affiliation(s)
- Gunjan Agarwal
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Amit Patil
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | |
Collapse
|
25
|
Chadar D, Rao SS, Gejji SP, Ugale B, Nagaraja CM, Nikalje M, Salunke-Gawali S. Regioselective synthesis of a vitamin K3 based dihydrobenzophenazine derivative: its novel crystal structure and DFT studies. RSC Adv 2015. [DOI: 10.1039/c5ra13169c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel regioselective synthesis of vitamin K3 based dihydrobenzophenazine is reported.
Collapse
Affiliation(s)
- Dattatray Chadar
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Soniya S. Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Bharat Ugale
- Department of Chemistry
- Indian Institute of Technology
- Rupnagar-140001
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology
- Rupnagar-140001
- India
| | - Milind Nikalje
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | |
Collapse
|
26
|
Pal S, Konkimalla VB, Kathawate L, Rao SS, Gejji SP, Puranik VG, Weyhermüller T, Salunke-Gawali S. Targeting a chemorefractory COLO205 (BRAF V600E) cell line using substituted benzo[α]phenoxazines. RSC Adv 2015. [DOI: 10.1039/c5ra14949e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzo[α]phenoxazine derivatives specifically toxic to a malignant COLO205 cell line with a BRAF mutation (V600E) and nontoxic to a non-malignant wild-type BRAF HEK293T cell line are studied.
Collapse
Affiliation(s)
- Sanjima Pal
- School of Biological Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar 751005
- India
| | - V. Badireenath Konkimalla
- School of Biological Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar 751005
- India
| | - Laxmi Kathawate
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Soniya S. Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Vedavati G. Puranik
- Center for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | | | | |
Collapse
|