1
|
Wu F, Du M, Ling J, Wang R, Hao N, Wang Z, Li X. In silico degradation of fluoroquinolones by a microalgae-based constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134946. [PMID: 38941832 DOI: 10.1016/j.jhazmat.2024.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Fluoroquinolone antibiotics (FQs) have been used worldwide due to their extended antimicrobial spectrum. However, the overuse of FQs leads to frequent detection in the environment and cannot be efficiently removed. Microalgae-based constructed wetland systems have been proven to be a relatively proper method to treat FQs, mainly by microalgae, plants, microorganisms, and sediments. To improve the removal efficiency of microalgae-constructed wetland, a systematic molecular design, screening, functional, and risk evaluation method was developed using three-dimensional quantitative structure-activity relationship models, molecular dynamics simulation, molecular docking, and TOPKAT approaches. Five designed ciprofloxacin alternatives with improved bactericidal effects and lower human health risks were found to be more easily degraded by microalgae (16.11-167.88 %), plants (6.72-58.86 %), microorganisms (9.10-15.02 %), and sediments (435.83 %-1763.51 %) compared with ciprofloxacin. According to the mechanism analysis, the removal effect of the FQs can be affected via changes in the number, bond energy, and molecular descriptors of favorable and unfavorable amino acids. To the best of our knowledge, this is the first comprehensive study of improving the microalgae, plants, microorganisms, and sediment removal efficiency of FQs in constructed wetlands, which provides theoretical support for the treatment of FQ pollution.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianglong Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Renjie Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zini Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun 130062, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
2
|
Gao J, Li X, Fu R, Li Y. Mechanism analysis and improved molecular modification: Design of high efficiency and environmentally friendly triazole fungicide substitutes. CHEMOSPHERE 2023:139150. [PMID: 37290508 DOI: 10.1016/j.chemosphere.2023.139150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The adverse effects of triazole fungicides (TFs) on the soil and the environmental damage caused by their residues have attracted the attention of the international community. To effectively prevent and control the above problems, this paper designed 72 substitutes of TFs with significantly better molecular functionality (>40%) using Paclobutrazol (PBZ) as the template molecule. Then, the comprehensive scores for environmental effects calculated after normalization by "extreme value method-entropy weight method-weighted average method" was the dependent variable, the structural parameters of TFs molecules was the independent variable (PBZ-214 was the template molecule) to construct the 3D-QSAR model of integrated environmental effects of TFs with high degradability, low bioenrichment, low endocrine disruption effects, and low hepatotoxicity and designed 46 substitutes of TFs with significantly better comprehensive environmental effects (>20%). After confirming the above effects of TFs and assessing human health risk and the universality of biodegradation and endocrine disruption, we screened PBZ-319-175 as the eco-friendly substitute of TF, which had high efficiency (improved functionality) and better environmental effects than those of the target molecule by 51.63% and 36.09%, respectively. Finally, the results of the molecular docking analysis showed that non-bonding interactions (hydrogen bonding, electrostatic, or polar force) predominantly affected the association between PBZ-319-175 and its biodegradable protein, and the hydrophobic effect of the amino acids distributed around PBZ-319-175 played a significant role. Additionally, we determined the microbial degradation path of PBZ-319-175 and found that the steric hindrance of the substituent group after molecular modification promoted its biodegradability. In this study, we enhanced molecular functionality twice and also reduce the major damage of TFs to the environment by performing iterative modifications. This paper provided theoretical support for the development and application of high-performance, eco-friendly substitutes of TFs.
Collapse
Affiliation(s)
- Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
3
|
Exploring Interaction Dynamics of Designed Organic Charge Transfer Complex of 6-Aminoindole and Chloranilic Acid: Spectrophotometric, Characterization, Computational, Antimicrobial, and DNA Binding Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Manojkumar P, Harilal, Mahipal V, Suresh G, Venkatesh N, Ramesh M, Parthasarathy T. Exploring the charge transfer dynamics of hydrogen bonded crystals of 2-methyl-8-quinolinol and chloranilic acid: synthesis, spectrophotometric, single-crystal, DFT/PCM analysis, antimicrobial, and DNA binding studies. RSC Adv 2021; 11:39994-40010. [PMID: 35494159 PMCID: PMC9044685 DOI: 10.1039/d1ra07658b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/31/2023] Open
Abstract
The new chemistry of the hydrogen-bonded charge and proton transfer complex (HB CT) between electron-donor 2-methyl-8-quinolinol (2 MQ) and electron-acceptor chloranilic acid (CHLA) has been studied using electronic absorption spectroscopy in acetonitrile (ACN), methanol (MeOH), and ethanol (EtOH) polar media at room temperature. The stoichiometric proportion of the HB CT complex was observed to be 1 : 1 from the Job data and photometric titration process. The association constant (K CT) and molar absorptivity (ε CT) of the HB CT complex were determined by using the modified Benesi-Hildebrand equation in three polarities. Other spectroscopic physical parameters like the energy of interaction (E CT), ionization potential (I D), resonance energy (R N), standard free energy change (ΔG°), oscillator strength (f), and transition dipole moment (μ) were also evaluated. The HB CT complex structure was confirmed by different characterization techniques, such as FT-IR, NMR, TGA-DTA, and SEM-EDX analysis. Powder XRD and single-crystal XRD were used to determine the nature and structure of the synthesized HB CT complex. DNA binding studies for the HB CT complex produced a good binding constant value of 2.25 × 104 L mol-1 in UV-visible and 1.17 × 104 L mol-1 in fluorescence spectroscopy. The biological activity of the HB CT complex was also tested in vitro against the growth of bacteria and fungi, and the results indicated remarkable activity for the HB CT complex compared to the standard drugs, ampicillin and clindamycin. Hence, the abovementioned biological results of the synthesized HB CT complex show it could be used as a pharmaceutical drug in the future. Computational analysis was carried out by DFT studies using the B3LYP function with a basis set of 6-31G(d,p) in the gas phase and PCM analysis. The computational studies further supported the experimental results by confirming the charge and proton transfer complex.
Collapse
Affiliation(s)
| | - Harilal
- School of Chemistry, University of Hyderabad Gachibowli Hyderabad-500046 India
| | - Varukolu Mahipal
- Department of Chemistry, Osmania University Hyderabad-500007 India
| | | | | | - Macha Ramesh
- University College of Science, Osmania University Saifabad Hyderabad-500004 India
| | | |
Collapse
|
5
|
El-Dissouky A, Khalil TE, Elbadawy HA, El-Sayed DS, Attia AA, Foro S. X-ray crystal structure, spectroscopic and DFT computational studies of H-bonded charge transfer complexes of tris (hydroxymethyl)aminomethane (THAM) with chloranilic acid (CLA). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Synthesis, spectrophotometric characterization and DFT computational study of a novel quinoline derivative, 2-amino-4-(2,4,6-trinitrophenylamino)-quinoline-3-carbonitrile. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Al-Ahmary KM, Soliman SM, Habeeb MM, Al-Obidan AH. Spectral analysis and DFT computations of the hydrogen bonded complex between 2,6-diaminopyridine with 2,6-dichloro-4-nitrophenol in different solvents. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Al-Ahmary KM, Soliman SM, Mekheimer RA, Habeeb MM, Alenezi MS. Synthesis, spectral studies and DFT computational analysis of hydrogen bonded-charge transfer complex between chloranilic acid with 2,4-diamino-quinoline-3-carbonitrile in different polar solvents. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Pawlukojć A, Hetmańczyk J, Nowicka-Scheibe J, Maurin JK, Schilf W, Rozwadowski Z. Spectroscopic, thermal and structural studies of new -leucine and -leucine complexes with chloranilic acid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Al-Ahmary KM, Habeeb MM, Al-Obidan AH. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol+50% acetonitrile. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 154:135-144. [PMID: 26520474 DOI: 10.1016/j.saa.2015.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job(')s and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (K(PT)) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer(')s law was obeyed in the concentration range 0.5-8 μg mL(-1) with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and (1)H NMR spectroscopy.
Collapse
Affiliation(s)
- Khairia M Al-Ahmary
- Department of Chemistry, Faculty of Sciences - AL Faisaliah Campus, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Moustafa M Habeeb
- Department of Chemistry, Faculty of Sciences - AL Faisaliah Campus, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Chemistry, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Areej H Al-Obidan
- Department of Chemistry, University College - Dhiba, University of Tabuk, Dhiba, Saudi Arabia
| |
Collapse
|