1
|
Hamzi I, Mered Y, Mostefa-Kara B. Highly Sensitive and Selective Recognition of Zn 2⁺ and Fe 2⁺ Ions Using a Novel Thiophene-Derived Hydrazone Dual Fluorometric Sensor. J Fluoresc 2024:10.1007/s10895-024-03897-1. [PMID: 39126605 DOI: 10.1007/s10895-024-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The selective detection of Zn2⁺ and Fe2⁺ ions is critical in environmental and biological studies. Schiff base chemosensors hold promise, but exploration of thiophene-derived variants remains limited. This work introduces a novel thiophene-derived Schiff base sensor (TBH), synthesized through the condensation reaction of thiophene-2-carboxaldehyde with benzil-bis-hydrazone, for the selective detection of Zn2⁺ and Fe2⁺ ions. TBH exhibits remarkable selectivity, with a significant 185-fold fluorescence enhancement for Zn2⁺ and complete quenching 99% for Fe2⁺, allowing for distinct detection of both ions. Notably, TBH demonstrates high binding affinity towards Zn2⁺ and Fe2⁺, even in the presence of competing cations, forming stable 1:1 complexes. This finding is supported by absorption and emission titration studies and FT-IR analysis as well. This easily synthesized, rapid and cost-effective sensor offers a promising approach for sensitive and differentiated dual detection of Zn2⁺ and Fe2⁺ in environmental and biological systems.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, Tlemcen, 13000, Algeria.
| | - Y Mered
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria
| | - B Mostefa-Kara
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P. 119, Tlemcen, 13000, Algeria
| |
Collapse
|
2
|
Hamzi I, Touati Y, Mostefa-Kara B. Benzil Bis-Hydrazone Based Fluorescence 'Turn-on' Sensor for Highly Sensitive and Selective Detection of Zn(II) Ions. J Fluoresc 2023; 33:1683-1693. [PMID: 36809411 DOI: 10.1007/s10895-023-03178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
In this study, a novel Benzil Bis-Hydrazone (BBH) sensor with two C = N-N = C moieties was designed and synthesized based on the condensation reaction between benzil-dihydrazone (b) and cinnamaldehyde. The BBH probe in dimethylsulfoxide showed extremely weak fluorescence. However, the same solution exhibited an intensive fluorescence enhancement (152-fold) with the introduction of Zn(II) ions. In contrast, no or negligible fluorescence changes were observed when other ions were added. The fluorogenic behavior of BBH towards the examined cations indicated an excellent selectivity of the BBH sensor for Zn(II) cations without any interference from other cations like Fe(II), Mg(II), Cu(II), Co(II), Mn(II), Cr(III), Hg(II), Sn(II), Al(I), La(III), Ca(II), Ba(II), Na(I), K(I), and especially Cd(II). Moreover, the UV-vis spectrophotometric titrations revealed that a 1:1 stoichiometric complex BBH-Zn(II) was formed during the Zn(II) sensing and the binding constant value for this complex was calculated to be equal to 106.8. Further, in order to show the affinity of the BBH sensor for Zn(II) cations, it was deemed necessary to determine the limit of detection (LOD) which was found to equal to 2.5 10-4 M.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, 13000, Tlemcen, Algeria.
| | - Y Touati
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria
| | - B Mostefa-Kara
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria
| |
Collapse
|
3
|
Niquini FM, Machado PH, Valadares Rodrigues JH, Pontes-Silva AV, Figueiredo RC, Silveira RG, Corrêa RS. On the experimental and theoretical calculations of rotameric conformations of a new Schiff base derived from amantadine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Tan XJ, Wang D, Hei XM, Yang FC, Zhu YL, Xing DX, Ma JP. Synthesis, crystal structures, antiproliferative activities and reverse docking studies of eight novel Schiff bases derived from benzil. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:44-63. [PMID: 31919307 DOI: 10.1107/s2053229619015687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
Eight novel Schiff bases derived from benzil dihydrazone (BDH) or benzil monohydrazone (BMH) and four fused-ring carbonyl compounds (3-formylindole, FI; 3-acetylindole, AI; 3-formyl-1-methylindole, MFI; 1-formylnaphthalene, FN) were synthesized and characterized by elemental analysis, ESI-QTOF-MS, 1H and 13C NMR spectroscopy, as well as single-crystal X-ray diffraction. They are (1Z,2Z)-1,2-bis{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFI), C32H24N6, (1Z,2Z)-1,2-bis{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethane (BDHAI), C34H28N6, (1Z,2Z)-1,2-bis{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BMHMFI) acetonitrile hemisolvate, C34H28N6·0.5CH3CN, (1Z,2Z)-1,2-bis{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFN), C36H26N4, (Z)-2-{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFI), C23H17N3O, (Z)-2-{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethanone (BMHAI), C24H19N3O, (Z)-2-{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHMFI), C24H19N3O, and (Z)-2-{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFN) C25H18N2O. Moreover, the in vitro cytotoxicity of the eight title compounds was evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC-5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that four (BDHMFI, BDHFN, BMHMFI and BMHFN) are inactive and the other four (BDHFI, BDHAI, BMHFI and BMHAI) show severe toxicities against human A549 and mouse 4T1 cells, similar to the standard cisplatin. All the compounds exhibited weaker cytotoxicity against normal cells than cancer cells. The Swiss Target Prediction web server was applied for the prediction of protein targets. After analyzing the differences in frequency hits between these active and inactive Schiff bases, 18 probable targets were selected for reverse docking with the Surflex-dock function in SYBYL-X 2.0 software. Three target proteins, i.e. human ether-á-go-go-related (hERG) potassium channel, the inhibitor of apoptosis protein 3 and serine/threonine-protein kinase PIM1, were chosen as the targets. Finally, the ligand-based structure-activity relationships were analyzed based on the putative protein target (hERG) docking results, which will be used to design and synthesize novel hERG ion channel inhibitors.
Collapse
Affiliation(s)
- Xue Jie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Di Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Xiao Ming Hei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Feng Cun Yang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Ya Ling Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Dian Xiang Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Jian Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
5
|
Novel benzildihydrazone based Schiff bases: Syntheses, characterization, thermal properties, theoretical DFT calculations and biological activity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Asiri AM, Sobahi TR, Al-Amari MM, Asad M, Zayed MEM, Khan SA. Physicochemical Investigation of HDDP Azomethine Dye as Turn-On Fluorescent Chemosensor for High Selectivity and Sensitivity of Al3+ Ions. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0805-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Tan XJ, Wang D, Lei XG, Chen JP. Theoretical insight into the disordered structure of (Z)-2-[(E)-(4-methoxybenzylidene)hydrazinylidene]-1,2-diphenylethanone: the role of noncovalent interactions. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1058-1067. [PMID: 30191899 DOI: 10.1107/s2053229618009762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
A global glide disorder has been discovered during an X-ray investigation of the crystal structure of (Z)-2-[(E)-(4-methoxybenzylidene)hydrazinylidene]-1,2-diphenylethanone (MHDE, C22H18N2O2) at room temperature. In another crystal, however, such disorder disappears (still at room temperature). Even though the disorder may be partly due to the poor quality of the harvested crystal, the structure can shed light on the nature of disorder. With the help of quantum chemical calculations, it is found that the global disorder seems to be connected with the need for stabilization of the somewhat rigid but mobile and unstable molecular structure. The most relevant feature driving the packing of the disordered structure concerns the slight perturbations (such as glide) of two or more disorder components (fractional occupancies) distributed throughout the crystal.
Collapse
Affiliation(s)
- Xue Jie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Di Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Xu Gang Lei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jun Peng Chen
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
8
|
Carreño A, Zúñiga C, Páez-Hernández D, Gacitúa M, Polanco R, Otero C, Arratia-Pérez R, Fuentes JA. Study of the structure–bioactivity relationship of three new pyridine Schiff bases: synthesis, spectral characterization, DFT calculations and biological assays. NEW J CHEM 2018. [DOI: 10.1039/c8nj00390d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schiff bases exhibit a broad range of applications, including their use as catalysts, stabilizers, dyes, and intermediates in organic synthesis; and biological activities, such as antifungal properties.
Collapse
Affiliation(s)
- Alexander Carreño
- Center of Applied Nanosciences (CANS)
- Universidad Andres Bello
- Santiago
- Chile
| | - César Zúñiga
- Center of Applied Nanosciences (CANS)
- Universidad Andres Bello
- Santiago
- Chile
| | | | | | - Rubén Polanco
- Centro de Biotecnología Vegetal (CBV)
- Facultad de Ciencias de la Vida
- Universidad Andres Bello
- Santiago
- Chile
| | - Carolina Otero
- Escuela de Química y Farmacia
- Facultad de Medicina
- Universidad Andres Bello
- Chile
| | | | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana
- Facultad de Ciencias de la Vida
- Universidad Andres Bello
- Santiago
- Chile
| |
Collapse
|
9
|
Chandra R, Datta A, Manna A, Saha R, Kumar Patra G. In situ reduction of Cu(II) forming a double-stranded di-nuclear copper(I) helicate of a bis azino-pyridyl ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Tektas O, Akkemik E, Baykara H. Investigation of the Effect of Some Optically Active Imine Compounds on the Enzyme Activities of hCA-I and hCA-II under In Vitro Conditions: An Experimental and Theoretical Study. J Biochem Mol Toxicol 2016; 30:277-86. [DOI: 10.1002/jbt.21788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Osman Tektas
- Department of Chemistry, Faculty of Arts and Sciences; Siirt University; 56100 Siirt Turkey
| | - Ebru Akkemik
- Faculty of Engineering and Architecture, Food Engineering; Siirt University; 56100 Siirt Turkey
| | - Haci Baykara
- Department of Chemistry, Faculty of Arts and Sciences; Siirt University; 56100 Siirt Turkey
- Center of Nanotechnology Research and Development (CIDNA), Facultad de Ingeniería Mecánica y Ciencias de la Producción; Escuela Superior Politécnica del Litoral, ESPOL; Campus Gustavo Galindo Km 30.5 Vía Perimetral Guayaquil Ecuador
| |
Collapse
|