1
|
Chan WL, Xie C, Lo WS, Bünzli JCG, Wong WK, Wong KL. Lanthanide-tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chem Soc Rev 2021; 50:12189-12257. [PMID: 34553719 DOI: 10.1039/c9cs00828d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetrapyrrole derivatives such as porphyrins, phthalocyanines, naphthalocyanines, and porpholactones, are highly stable macrocyclic compounds that play important roles in many phenomena linked to the development of life. Their complexes with lanthanides are known for more than 60 years and present breath-taking properties such as a range of easily accessible redox states leading to photo- and electro-chromism, paramagnetism, large non-linear optical parameters, and remarkable light emission in the visible and near-infrared (NIR) ranges. They are at the centre of many applications with an increasing focus on their ability to generate singlet oxygen for photodynamic therapy coupled with bioimaging and biosensing properties. This review first describes the synthetic paths leading to lanthanide-tetrapyrrole complexes together with their structures. The initial synthetic protocols were plagued by low yields and long reaction times; they have now been replaced with much more efficient and faster routes, thanks to the stunning advances in synthetic organic chemistry, so that quite complex multinuclear edifices are presently routinely obtained. Aspects such as redox properties, sensitization of NIR-emitting lanthanide ions, and non-linear optical properties are then presented. The spectacular improvements in the quantum yield and brightness of YbIII-containing tetrapyrrole complexes achieved in the past five years are representative of the vitality of the field and open welcome opportunities for the bio-applications described in the last section. Perspectives for the field are vast and exciting as new derivatizations of the macrocycles may lead to sensitization of other LnIII NIR-emitting ions with luminescence in the NIR-II and NIR-III biological windows, while conjugation with peptides and aptamers opens the way for lanthanide-tetrapyrrole theranostics.
Collapse
Affiliation(s)
- Wai-Lun Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chen Xie
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean-Claude G Bünzli
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland.
| | - Wai-Kwok Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Mgidlana S, Şen P, Nyokong T. Direct nonlinear optical absorption measurements of asymmetrical zinc(II) phthalocyanine when covalently linked to semiconductor quantum dots. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Nnaji N, Nwaji N, Mack J, Nyokong T. Corrosion Resistance of Aluminum against Acid Activation: Impact of Benzothiazole-Substituted Gallium Phthalocyanine. Molecules 2019; 24:molecules24010207. [PMID: 30626054 PMCID: PMC6337598 DOI: 10.3390/molecules24010207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/27/2022] Open
Abstract
This study describes the adsorption behavior of organic inhibitors at the aluminum-HCl solution interface and their corrosion inhibition performance. The organic inhibitors employed are: 4-(benzo [d]thiazol-2ylthio)phthalonitrile (BTThio) and tetrakis[(benzo[d]thiazol-2-yl-thio)phthalo- cyaninato]gallium(III) chloride (ClGaBTThioPc). The corrosion behavior of these inhibitors is investigated using electrochemical and computational techniques. Open circuit potential results reveal predominant cathodic character for the mechanism of aluminum corrosion inhibition by the inhibitors. Inhibition efficiency values from potentiodynamic polarization measurements increase from 46.9 to 70.8% for BTThio and 59.7 to 81.0% for ClGaBTThioPc within the concentration range of 2 to 10 μM. Scanning electron microscopy (SEM) measurements reveal protection of the metal surface from acid attack, in the presence of the inhibitors and energy dispersive X-ray (EDX) measurements show that the most probable way by which the inhibitors protect the metal surface would be by shielding it from the corrosion attacks of Cl− from the acid. Quantum chemical parameters corroborate well with experimental findings.
Collapse
Affiliation(s)
- Nnaemeka Nnaji
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Njemuwa Nwaji
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - John Mack
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Tebello Nyokong
- Centre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
4
|
Conjugated macrocyclic materials with photoactivated optical absorption for the control of energy transmission delivered by pulsed radiations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Shumba M, Nyokong T. Effects of covalent versus non-covalent interactions on the electrocatalytic behavior of tetracarboxyphenoxyphthalocyanine in the presence of multi-walled carbon nanotubes. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1303679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Munyaradzi Shumba
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|