1
|
Lokolkar M, Udnoor A, Ali MS, Katrahalli U, Kalasad MN, Al-Lohedan HA, Hadagali MD. Investigations on the complexation and binding mechanism of bovine serum albumin with Ag-doped TiO 2 nanoparticles. Phys Chem Chem Phys 2024; 26:26453-26464. [PMID: 39392120 DOI: 10.1039/d4cp02056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
It is essential to study the interactions between nanoparticles and proteins to better understand the biological interactions of nanoparticles. In this study, we studied the protein adsorption mode on the surface of Ag-doped TiO2 nanoparticles (NPs) using a model protein, bovine serum albumin (BSA). The mechanism of binding BSA to the Ag-doped TiO2 NPs was studied by applying fluorescence quenching, absorbance measurements, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The strong binding between BSA and Ag-doped TiO2 NPs was confirmed by a high value of binding constant (K = 2.65 × 105 L mol-1). We also studied the thermal stability of BSA in the presence of the Ag-doped TiO2 NPs. Thermodynamic parameters indicated that the adsorption of BSA on the Ag-doped TiO2 NPs was a spontaneous, natural and exothermic process. The effect of Ag-doped TiO2 NPs on the transportation function of BSA was also studied using a fluorescence spectroscopic technique. Fluorescence spectroscopic data suggested the existence of a strong interaction between BSA and the surface of the Ag-doped TiO2 NPs, which indicated that the binding affinities of some selected amino acids in BSA changed. This, in turn, clearly confirms that the Ag-doped TiO2 NPs affect the transportation capability of BSA in blood.
Collapse
Affiliation(s)
- Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi - 590003, Karnataka, India
| | - Abhishek Udnoor
- University of Chemistry and Chemical Technology, Technická 5, 160 00 Praha, Czech Republic
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bengaluru 560 004, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangotri, Davangere 577007, Karnataka, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
2
|
Sodipo BK, Kasim Mohammed Z. Advances in biodistribution of gold nanoparticles: the influence of size, surface charge, and route of administration. Biomed Mater 2024; 19:042010. [PMID: 38838693 DOI: 10.1088/1748-605x/ad5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
To improve the translational and clinical applications of gold nanoparticles (GNPs) in medicine there is a need for better understanding of physicochemical properties of the nanoparticles in relation to the systemic parameters andin-vivoperformance. This review presents the influence of physicochemical properties (surface charges and size) and route of administration on the biodistribution of GNPs. The role of protein corona (PC) (a unique biological identifier) as a barrier to biodistribution of GNPs, and the advances in engineered GNPs towards improving biodistribution are presented. Proteins can easily adsorb on charged (anionic and cationic) functionalized GNPs in circulation and shape the dynamics of their biodistribution. Non-ionic coatings such as PEG experience accelerated blood clearance (ABC) due to immunogenic response. While zwitterionic coatings provide stealth effects to formation of PC on the GNPs. GNPs with sizes less than 50 nm were found to circulate to several organs while the route of administration of the GNPs determines the serum protein that adsorbs on the nanoparticles.
Collapse
Affiliation(s)
- Bashiru K Sodipo
- Department of Physics, Kaduna State University, Kaduna, Nigeria
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | | |
Collapse
|
3
|
Udnoor A, Lokolkar M, Yallur BC, Kale R, Kalasad MN, Katrahalli U, Manjunatha DH. Monitoring the interactions between bovine serum albumin and ZnO/Ag nanoparticles by spectroscopic techniques. J Biomol Struct Dyn 2023; 41:352-365. [PMID: 34821210 DOI: 10.1080/07391102.2021.2006788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inducing the bio-functionalization in noble metal nanoparticles like gold, silver, zinc is very important to accomplish their biocompatibility in biological activities. These metal nanoparticles are being rigorously used in bio-sensing tools keeping their remarkable properties in mind. Amongst the serum albumins, the most ample proteins in plasma are bovine serum albumin and human serum albumin. A broad variety of physiological functions of bovine serum albumin has made it a model protein for bio-functionalization. In the present study, ZnO/Ag nanoparticles were synthesized and characterized by SEM and XRD techniques and the interaction between bovine serum albumin and ZnO/Ag nanoparticles was evaluated by employing ultra-violet, steady state fluorescence, circular dichroism and FTIR spectroscopic techniques. Upon the excitation of bovine serum albumin, ZnO/Ag nanoparticles appreciably reduced the intrinsic fluorescence intensity of bovine serum albumin. The number of binding locations and apparent binding constants at different temperatures were calculated by the fluorescence quenching method. Static mechanism of quenching and conformational modifications in bovine serum albumin were also found.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Udnoor
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Basappa C Yallur
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | - Raju Kale
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangothri, Davangere, Karnataka, India
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bangalore, Karnataka, India
| | | |
Collapse
|
4
|
McColman S, Li R, Osman S, Bishop A, Wilkie KP, Cramb DT. Serum proteins on nanoparticles: early stages of the "protein corona". NANOSCALE 2021; 13:20550-20563. [PMID: 34859798 DOI: 10.1039/d1nr06137b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles in biological systems such as the bloodstream are exposed to a complex solution of biomolecules. A "corona" monolayer of proteins has historically been thought to form on nanoparticles upon introduction into such environments. To examine the first steps of protein binding, Fluorescence Correlation/Cross Correlation Spectroscopy and Fluorescence Resonance Energy Transfer were used to directly analyze four different nanoparticle systems. CdSe/ZnS core/shell quantum dots, 100 nm diameter polystyrene fluospheres, 200 nm diameter polystyrene fluospheres, and 200 nm diameter PEG-grafted DOTAP liposomes were studied with respect to serum protein binding, using bovine serum albumin as a model. Surface heterogeneity is found to be a key factor in protein binding to these nanoparticles, and as such we present a novel conceptualization of the early hard corona as low-ratio, non-uniform binding rather than a uniform monolayer.
Collapse
Affiliation(s)
- Sarah McColman
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Rui Li
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Selena Osman
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
| | - Amanda Bishop
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Kathleen P Wilkie
- Department of Mathematics, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada
| | - David T Cramb
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto ON M5B 2 K3, Canada.
- Institute for Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto ON M5B 1 T8, Canada
- Department of Chemistry, Faculty of Science, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Barbir R, Pem B, Kalčec N, Kastner S, Podlesnaia K, Csáki A, Fritzsche W, Vinković Vrček I. Application of Localized Surface Plasmon Resonance Spectroscopy to Investigate a Nano-Bio Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1991-2000. [PMID: 33499594 DOI: 10.1021/acs.langmuir.0c03569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The accurate determination of events at the interface between a biological system and nanomaterials is necessary for efficacy and safety evaluation of novel nano-enabled medical products. Investigating the interaction of proteins with nanoparticles (NPs) and the formation of protein corona on nanosurfaces is particularly challenging from the methodological point of view due to the multiparametric complexity of such interactions. This study demonstrated the application of localized surface plasmon resonance (LSPR) spectroscopy as a low-cost and rapid biosensing technique that can be used in parallel with other sophisticated methods to monitor nano-bio interplay. Interaction of citrate-coated gold NPs (AuNPs) with human plasma proteins was selected as a case study to evaluate the applicability and value of scientific data acquired by LSPR as compared to fluorescence spectroscopy, which is one of the most used techniques to study NP interaction with biomolecules. LSPR results obtained for interaction of AuNPs with bovine serum albumin, glycosylated human transferrin, and non-glycosylated recombinant human transferrin correlated nicely with the adsorption constants obtained by fluorescence spectroscopy. This ability, complemented by its fast operation and reliability, makes the LSPR methodology an attractive option for the investigation of a nano-bio interface.
Collapse
Affiliation(s)
- Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Stephan Kastner
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | | | - Andrea Csáki
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | | | | |
Collapse
|
6
|
Chakraborty A, Biswas A. Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles. Int J Biol Macromol 2020; 152:250-260. [PMID: 32084461 DOI: 10.1016/j.ijbiomac.2020.02.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have several biomedical applications. However, the effective usage of these two nanoparticles is impeded due to limited understanding of their interaction with proteins including small heat shock proteins (sHSPs). Specifically, no evidences of interaction of these two nanoparticles with HSP18 (an antigenic protein) which is an important factor for the growth and survival of M. leprae (the causative organism of leprosy) are available in the literature. Here, we report for the first time evidences of "HSP18-AuNPs/AgNPs interaction" and its impact on the structure and chaperone function of HSP18. Interaction of citrate-capped AuNPs/AgNPs (~20 nm diameter) to HSP18 alters the secondary and tertiary structure of HSP18 in a distinctly opposite manner; while "HSP18-AuNPs interaction" leads to oligomeric association, "HSP18-AgNPs interaction" results in oligomeric dissociation of the protein. Surface hydrophobicity, thermal stability, chaperone function of HSP18 and survival of thermally stressed E. coli harbouring HSP18 are enhanced upon AuNPs interaction, while all of them are reduced upon interaction with AgNPs. Altogether, our study reveals that HSP18 is an important drug target in leprosy and its chaperone function may possibly plays a vital role in the growth and survival of M. leprae pathogen in infected hosts.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
7
|
Xing Y, Ellis A, Magnuson M, Harper WF. Adsorption of bacteriophage MS2 to colloids: Kinetics and particle interactions. Colloids Surf A Physicochem Eng Asp 2020; 585:1-7. [DOI: 10.1016/j.colsurfa.2019.124099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Delpiano G, Casula MF, Piludu M, Corpino R, Ricci PC, Vallet-Regí M, Sanjust E, Monduzzi M, Salis A. Assembly of Multicomponent Nano-Bioconjugates Composed of Mesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles. ACS OMEGA 2019; 4:11044-11052. [PMID: 31460202 PMCID: PMC6647957 DOI: 10.1021/acsomega.9b01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (bovine serum albumin, BSA, or lysozyme, LYZ), and gold nanoparticles (GNPs). These nano-bioconjugates may find applications in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers, proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions. Finally, GNPs can either be used as contrast agents for imaging or for photothermal therapy. Here, amino-functionalized MSNs (MSN-NH2) were synthesized and characterized through various techniques (small angle X-rays scattering TEM, N2 adsorption/desorption isotherms, and thermogravimetric analysis (TGA)). BSA or lysozyme were then grafted on the external surface of MSN-NH2 to obtain MSN-BSA and MSN-LYZ bioconjugates, respectively. Protein immobilization on MSNs surface was confirmed by Fourier transform infrared spectroscopy, ζ-potential measurements, and TGA, which also allowed the estimation of protein loading. The MSN-protein samples were then dispersed in a GNP solution to obtain MSN-protein-GNPs nano-bioconjugates. Transmission electron microscopy (TEM) analysis showed the occurrence of GNPs on the MSN-protein surface, whereas almost no GNPs occurred in the protein-free control samples. Fluorescence and Raman spectroscopies suggested that proteins-GNP interactions involve tryptophan residues.
Collapse
Affiliation(s)
- Giulia
Rossella Delpiano
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Maria F. Casula
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Marco Piludu
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Riccardo Corpino
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Pier Carlo Ricci
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - María Vallet-Regí
- Departamento
de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigacion
Sanitaria Hospital 12 de Octubre i+12, and Centro de Investigacion
Biomedica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Plaza Ramon y Cajal S/N, 28040 Madrid, Spain
| | - Enrico Sanjust
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Maura Monduzzi
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|
9
|
Peixoto de Almeida M, Quaresma P, Sousa S, Couto C, Gomes I, Krippahl L, Franco R, Pereira E. Measurement of adsorption constants of laccase on gold nanoparticles to evaluate the enhancement in enzyme activity of adsorbed laccase. Phys Chem Chem Phys 2018; 20:16761-16769. [PMID: 29882945 DOI: 10.1039/c8cp03116a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption of enzymes to nanoparticles and the mechanisms responsible for enzyme activity modulation of adsorbed enzymes are not well understood. In this work, gold nanoparticles were used for electrostatic adsorption of a plant-derived laccase. Adsorption constants were determined by four independent techniques: dynamic light scattering, electrophoretic light scattering, agarose gel electrophoresis and fluorescence quenching. Stable bionanoconjugates were formed with log K in the range 6.8-8.9. An increase in enzyme activity was detected, in particular at acidic and close to neutral pH values, a feature that expands the useful pH range of the enzyme. A model for the adsorption was developed, based on geometrical considerations and volume increase data from dynamic light scattering. This indicates that enzymes adsorbed to gold nanoparticles are ca. 9 times more active than the free enzyme.
Collapse
Affiliation(s)
- Miguel Peixoto de Almeida
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin Y, Xu J, Yu L, Yang Y, Wang C. Probing Molecular Basis for Constructing Interface Bionanostructures. Top Catal 2018. [DOI: 10.1007/s11244-018-0953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Vaishnav SK, Patel K, Chandraker K, Korram J, Nagwanshi R, Ghosh KK, Satnami ML. Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:155-162. [PMID: 28242444 DOI: 10.1016/j.saa.2017.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
The determination of thiol based biological molecules and drugs, such as cysteine (Cys) (I), α-lipoic acid (II), and sodium 2-sulfanylethane sulphonate (Mesna (III)) in human plasma are becoming progressively more important due to the growing body of knowledge about their essential role in numerous biological pathways. Herein we demonstrate a sensitive colorimetric sensor for the determination of medicinally important thiol drugs based on aggregation of the citrate capped silver nanoparticles (Ag NPs). This approach exploited the high affinity of thiols towards the Ag NPs surface which could tempt replacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. Because of aggregation, the plasmon band at around 400nm decreases gradually, along with the appearance of a new band connoting a red shift. The calibration curves are derived from the intensity ratios of A530/A400, which display a linear relation in the range of 1μM-150μM, 5μM-200μM and 10μM-130μM, respectively. The obtained detection limits (3σ) were found to be 1.5μM, 5.6μM and 10.2μM for compound I-III, respectively. The proposed method has been successfully applied for the detection of thiol compounds in real samples.
Collapse
Affiliation(s)
- Sandeep K Vaishnav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India; State Forensic Science Laboratory, Tikra Para, Raipur, C.G. 492013, India
| | - Kuleshwar Patel
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Kumudini Chandraker
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Jyoti Korram
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. Madhav Science P. G. College, Ujjain, M.P. 456010, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India.
| |
Collapse
|
12
|
Laser-fabricated gold nanoparticles for lateral flow immunoassays. Colloids Surf B Biointerfaces 2017; 149:351-357. [DOI: 10.1016/j.colsurfb.2016.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022]
|
13
|
Chen R, Riviere JE. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27863136 DOI: 10.1002/wnan.1440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017, 9:e1440. doi: 10.1002/wnan.1440 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|