1
|
Discovery of thiazolidin-4-one analogue as selective GSK-3β inhibitor through structure based virtual screening. Bioorg Med Chem Lett 2021; 52:128375. [PMID: 34560262 DOI: 10.1016/j.bmcl.2021.128375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
GSK-3β directly phosphorylate tubulin binding site of tau protein, indicating its importance in tau aggregation and, therefore, in Alzheimer's disease pathology. New GSK-3β inhibitors were identified using a structure-based screening, ADMET analysis. These studies revealed that ZINC09036109, ZINC72371723, ZINC72371725, and ZINC01373165 approached optimal ADMET properties along with good MM-GBSA dG binding. Protein kinase assays of these compounds against eight disease-relevant kinases were performed. During disease-relevant kinase profiling, ZINC09036109 ((E)-2-((3,4-dimethylphenyl)imino)-5-(3-methoxy-4-(naphthalen-2-ylmethoxy)benzyl)thiazolidin-4-one) emerged as a selective GSK-3β inhibitor with more than 10-fold selectivity over other disease-relevant kinases. Molecular dynamics study of ZINC09036109 molecule revealed interactions with Ile62, Phe67, Val135, Leu188, Asp200 amino acid residues of the binding site of GSK-3β, which were highly comparable to the co-crystallized molecule and hence validating comparative better activity of this compound compared to overall screened molecules.
Collapse
|
2
|
Nath V, Rohini A, Kumar V. Identification of M pro inhibitors of SARS-CoV-2 using structure based computational drug repurposing. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021; 37:102178. [PMID: 34611467 PMCID: PMC8483991 DOI: 10.1016/j.bcab.2021.102178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/03/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
The recent outbreak of COVID-19, caused by the novel pathogen SARS-coronavirus 2 (SARS-CoV-2) is a severe health emergency. In this pandemic, drug repurposing seems to be the most promising alternative to identify effective therapeutic agents for immediate treatment of infected patients. The present study aimed to evaluate all the drugs present in drug bank as potential novel SARS-CoV-2 inhibitors, using computational drug repurposing studies. Docking-based virtual screening and binding energy prediction were performed, followed by Absorption Distribution Metabolism Excretion calculation. Hydroxychloroquine and Nelfinavir have been identified as the best potential inhibitor against the SARS-CoV-2, therefore, they were used as reference compounds in computational DR studies. The docking study revealed 13 best compounds based on their highest binding affinity, binding energy, and dock score concerning the other screened compounds. Out of 13, only 4 compounds were further shortlisted based on their binding energy and best ADME properties. The hierarchical virtual screening yielded the best 04 drugs, DB07042 (compound 2), DB13035 (compound 3), DB13604 (compound 5) and DB08253 (compound 6), with commendable binding energies in kcal/mol, i.e. −65.45, −62.01, −52.09 and −51.70 respectively. Further, Molecular dynamics simulation with 04 best-retrieved hits has confirmed stable trajectories in protein in terms of root mean square deviation and root mean square fluctuation. During 30 ns simulation, the interactions were also found similar to the docking-based studies. However, clinical studies are necessary to investigate their therapeutic use against this outbreak.
Collapse
Key Words
- ACE, Angiotensin-Converting Enzyme
- ADME, Absorption Distribution Metabolism Excretion
- Binding energy
- CDR, Computational Drug Repurposing
- COVID
- CoV, Corona Virus
- Docking
- Drug repurposing
- HTVS, High-throughput virtual screening
- MMGBSA, Molecular mechanics generalized born surface area
- OPLS, Optimized Potentials for Liquid Simulations
- PDB, Protein data bank
- SARS, Severe Acute Respiratory Syndrome
- SP, Standard Precision
- Virtual screening
- XP, Extra precision
Collapse
Affiliation(s)
- Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - A Rohini
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
3
|
Shi L, Wu QG, Zhang JC, Yang GM, Liu W, Wang ZF. Mechanism of Shuang-Huang-Lian Oral Liquid for Treatment of Mycoplasmal Pneumonia in Children on Network Pharmacology. Comb Chem High Throughput Screen 2021; 23:955-971. [PMID: 32407262 DOI: 10.2174/1386207323666200514073428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Mycoplasmal pneumonia (MP) can lead to inflammation, multiple system immune damage, and mixed infection in children. The pathogenesis is still unclear. Shuang-Huang-Lian (SHL) oral liquid can treat acute upper respiratory tract infection, acute bronchitis and light pneumonia. However, our current understanding of the molecular mechanisms supporting its clinical application still lags behind due to the lack of researches. It is difficult to understand the overall sensitization mechanism of SHL oral liquid. The purpose is to explain the mechanism of action of drugs in this study, which is useful to ensure the safety of medication for children. METHODS The therapeutic mechanism of SHL oral liquid was investigated by a system pharmacology approach integrating drug-likeness evaluation, oral bioavailability prediction, ADMET, protein-protein interaction worknet, Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes database pathway performance, C-T-P network construction and molecular docking. RESULTS A total of 18 active ingredients contained in SHL oral liquid and 53 major proteins were screened out as effective players in the treatment of M. pneumoniae disease through some related pathways and molecular docking. The majority of targets, hubs and pathways were highly related to anti-mycoplasma therapy, immunity and inflammation process. CONCLUSION This study shows that the anti-bacterial effect of SHL oral liquid has multicomponent, multi-target and multi-pathway phenomena. The proposed approach may provide a feasible tool to clarify the mechanism of traditional Chinese medicines and further develop their therapeutic potentials.
Collapse
Affiliation(s)
- Ling Shi
- Department of Chemistry, Faculty of Science, Honghe University, Mengzi 661199, China
| | - Qi-Guo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China
| | - Ju-Cheng Zhang
- Department of Chemistry, Faculty of Science, Honghe University, Mengzi 661199, China
| | - Guang-Ming Yang
- Department of Chemistry, Faculty of Science, Honghe University, Mengzi 661199, China
| | - Wei Liu
- Department of Chemistry, Faculty of Science, Honghe University, Mengzi 661199, China
| | - Ze-Feng Wang
- Department of Chemistry, Faculty of Science, Honghe University, Mengzi 661199, China
| |
Collapse
|
4
|
Nath V, Ahuja R, Kumar V. Virtual Screening and In Silico Simulation Analysis for Rapid and Efficient Identification of Novel Natural GPR40 Agonist. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180815666180914162935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background:
Diabetes is the foremost health problem worldwide predisposing to increased
mortality and morbidity. The available synthetic drugs have serious side effects and thus, emphasize
further need to develop effective medication therapy. GPR40 represents an interesting target for developing
novel antidiabetic drug. In the current study, searching of potential natural hit candidate as agonist
by using structure based computational approach.
Methods:
The GPR40 agonistic activity of natural compounds was searched by using Maestro through
docking and Molecular Dynamics (MD) simulation application. Virtual screening by using IBScreen
library of natural compounds was done and the binding modes of newer natural entity(s) were investigated.
Further, MD studies of the GPR40 complex with the most promising hit found in this study justified
the stability of these complexes.
Results:
The silicone chip-based approach recognized the most capable six hits and the ADME prediction
aided the exploration of their pharmacokinetic potential. In this study, the obtained hit
(ZINC70692253) after the use of exhaustive screening having binding energy -107.501 kcal/mol and
root mean square deviation of hGPR40-ZINC70692253 is around 3.5 Å in 20 ns of simulation.
Conclusion:
Successful application of structure-based computational screening gave a novel candidate
from Natural Product library for diabetes treatment. So, Natural compounds may tend to cure diabetes
with lesser extent of undesirable effects in comparison to synthetic compounds and these novel screened
compounds may show a plausible biological response in the hit to lead finding of drug development
process. To the best of our knowledge, this is the first example of the successful application of SBVS to
discover novel natural hit compounds using hGPR40.
Collapse
Affiliation(s)
- Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini Ahuja
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
5
|
Nath V, Agrawal R, Kumar V. Structure based docking and molecular dynamics studies: Peroxisome proliferator-activated receptors –α/γ dual agonists for treatment of metabolic disorders. J Biomol Struct Dyn 2019; 38:511-523. [DOI: 10.1080/07391102.2019.1581089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini Agrawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
6
|
Nath V, Ahuja R, Kumar V. Identification of novel G-protein-coupled receptor 40 (GPR40) agonists by hybrid in silico-screening techniques and molecular dynamics simulations thereof. J Biomol Struct Dyn 2018; 37:3764-3787. [DOI: 10.1080/07391102.2018.1527255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rohini Ahuja
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Ligand-Based Pharmacophore Screening Strategy: a Pragmatic Approach for Targeting HER Proteins. Appl Biochem Biotechnol 2018; 186:85-108. [PMID: 29508211 DOI: 10.1007/s12010-018-2724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Targeting ErbB family of receptors is an important therapeutic option, because of its essential role in the broad spectrum of human cancers, including non-small cell lung cancer (NSCLC). Therefore, in the present work, considerable effort has been made to develop an inhibitor against HER family proteins, by combining the use of pharmacophore modelling, docking scoring functions, and ADME property analysis. Initially, a five-point pharmacophore model was developed using known HER family inhibitors. The generated model was then used as a query to screen a total of 468,880 compounds of three databases namely ZINC, ASINEX, and DrugBank. Subsequently, docking analysis was carried out to obtain hit molecules that could inhibit the HER receptors. Further, analysis of GLIDE scores and ADME properties resulted in one hit namely BAS01025917 with higher glide scores, increased CNS involvement, and good pharmaceutically relevant properties than reference ligand, afatinib. Furthermore, the inhibitory activity of the lead compounds was validated by performing molecular dynamic simulations. Of note, BAS01025917 was found to possess scaffolds with a broad spectrum of antitumor activity. We believe that this novel hit molecule can be further exploited for the development of a pan-HER inhibitor with low toxicity and greater potential.
Collapse
|
8
|
Malikanti R, Vadija R, Veeravarapu H, Mustyala KK, Malkhed V, Vuruputuri U. Identification of small molecular ligands as potent inhibitors of fatty acid metabolism in Mycobacterium tuberculosis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Rodrigues RP, Silva CHTPD. Discovery of potential neurodegenerative inhibitors in Alzheimer’s disease by casein kinase 1 structure-based virtual screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2020-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|