1
|
Perveen M, Noreen L, Waqas M, Mehmood RF, Iqbal J, Manzoor S, Nazir S, Shawky AM, Khera RA. A DFT approach for finding therapeutic potential of graphyne as a nanocarrier in the doxorubicin drug delivery to treat cancer. J Mol Graph Model 2023; 124:108537. [PMID: 37321062 DOI: 10.1016/j.jmgm.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
In the present work, the drug-loading efficacy of graphyne (GYN) for doxorubicin (DOX) drug is investigated for the first time by using density functional theory (DFT). Doxorubicin drug is effective in the cure of numerous types of cancer including bone cancer, gastric, thyroid, bladder, ovarian, breast, and soft tissue cancer. Doxorubicin drug prevents the cell division process by intercalating in the double-helix of DNA and stopping its replication. The optimized, geometrical, energetic, and excited-state characteristics of graphyne (GYN), doxorubicin drug (DOX), and doxorubicin-graphyne complex (DOX@GYN complex) are calculated to see how effective it is as a carrier. The DOX drug interacted with GYN with an adsorption-energy of -1.57 eV (gas-phase). The interaction of GYN with DOX drug is investigated using NCI (non-covalent interaction) analysis. The findings of this analysis showed that the DOX@GYN complex has weak forces of interaction. Charge transfer from doxorubicin drug to GYN during DOX@GYN complex formation is described by charge-decomposition analysis and HOMO-LUMO analysis. The increased dipole-moment (8.41 D) of the DOX@GYN in contrast with therapeutic agent DOX and GYN indicated that the drug will move easily in the biochemical system. Furthermore, the photo-induced electron-transfer process is explored for excited states, and it reveals that upon interaction, fluorescence-quenching will occur in the complex DOX@GYN. In addition, the influence of the positive and negative charge states on the GYN and DOX@GYN is also considered. Overall, the findings indicated that the GYN could be exploited as an effective drug-transporter for the delivery of doxorubicin drug. Investigators will be inspired to look at another 2D nanomaterials for drug transport applications as a result of this theoretical work.
Collapse
Affiliation(s)
- Mehvish Perveen
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Lubna Noreen
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Sidra Manzoor
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Sidra Nazir
- Faisalabad Institute of Cardiology, Faisalabad, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, 38000 Faisalabad, Pakistan.
| |
Collapse
|
2
|
Perveen M, Hadia NMA, Noreen A, Mehmood RF, Nasr S, Yahia IS, Khera RA, Iqbal J. Controlled supramolecular interactions for targeted release of Amiodarone drug through Graphyne to treat cardiovascular diseases: An in silico study. J Mol Graph Model 2023; 121:108452. [PMID: 36963305 DOI: 10.1016/j.jmgm.2023.108452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
In the current study, the drug loading ability of graphyne (GY) for the amiodarone (AMD) drug is investigated for the first time. The efficacy of GY as a carrier for amiodarone (a cardiovascular drug) is evaluated by calculating its electronic, energetic, optimized, and excited state properties with help of the density functional theory (DFT). The AMD drug interacted with the GY molecule with an adsorption energy of about -0.19 eV (gas-phase) and -1.92 eV (aqueous phase), suggesting that the AMD@GY complex is stable in water-phase. The HOMO (highest-occupied molecular-orbital) of the AMD@GY complex is concentrated on the AMD drug while the LUMO (lowest-unoccupied molecular-orbital) is centralized on GY with absolute charge separation, indicating charge transfer will occur between AMD and GY. The charge-transfer process is further studied with the aid of charge-decomposition analysis (CDA). The non-covalent interaction analysis (NCI) exposed that non-covalent forces exist between the GY carrier and AMD drug. These non-covalent forces between AMD drug and GY carrier play a significant role in drug unloading at the targeted or diseased site. Likewise, the calculations at excited-state, charge-state (+1 and -1) influence on GY and AMD@GY complex structures, and photo-induced electron transfer analysis (PET) are also studied for the graphyne-based drug-delivery system. According to PET and electron-hole analysis, fluorescence-quenching will occur upon interaction. Overall, it is concluded that graphyne can be exploited as a drug carrier for amiodarone drug delivery. Researchers will be fascinated to look at alternative 2D nanomaterials for drug delivery applications as a result of this theoretical work.
Collapse
Affiliation(s)
- Mehvish Perveen
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - N M A Hadia
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Al-Jouf, Saudi Arabia
| | - Asima Noreen
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan
| | - Samia Nasr
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - I S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan.
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan.
| |
Collapse
|
3
|
DFT study of therapeutic potential of graphitic carbon nitride as a carrier for controlled release of melphalan: an anticancer drug. J Mol Model 2022; 28:359. [PMID: 36227378 DOI: 10.1007/s00894-022-05337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
In the present research, the drug-delivery efficiency of graphitic carbon nitride (g-CN) for melphalan (an anti-cancer drug) was evaluated. To investigate the efficacy of g-CN as a drug-delivery system, the electronic properties of melphalan drug, g-CN, and g-CN-melphalan were calculated at the ground and excited states. The adsorption energy calculated for g-CN-melphalan complex in the water phase is - 1.51 eV. The interactions between g-CN and melphalan were investigated by a non-covalent interactions (NCl) analysis, which showed that there were weak interactions between g-CN and melphalan drug. These low intermolecular forces will allow for easy off-loading of the melphalan at the targeted site. Frontier molecular-orbitals (FMOs) analysis showed that the charge was transferred from melphalan to g-CN during the excitation process. Charge transfer was studied by charge decomposition analysis. Calculations at the excited state revealed that the g-CN-melphalan complex's λmax showed a redshift of 15 nm and 39 nm in the gas and water phase, respectively. The photoinduced electron transfer (PET) process was studied for 1-2 excited state by using electron hole theory. PET process suggests that fluorescence quenching may take place. The findings demonstrated that g-CN can be used as a drug-delivery system for melphalan drug to treat cancer. This investigation may also encourage more consideration of different 2D substances for drug delivery.
Collapse
|
4
|
Ilyas M, Ayu AR, Shehzad RA, Khan MA, Perveen M, Amin S, Muhammad S, Iqbal J. A DFT approach for finding therapeutic potential of two dimensional (2D) graphitic carbon nitride (GCN) as a drug delivery carrier for curcumin to treat cardiovascular diseases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Jaffar K, Riaz S, Qusain Afzal Q, Perveen M, Asif Tahir M, Nazir S, Iqbal J, Alrowaili Z, Somaily H, Al-Buriahi M. A DFT approach towards therapeutic potential of phosphorene as a novel carrier for the delivery of Felodipine (cardiovascular drug). COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Revanna BN, Madegowda M, Neelufar, Rangaswamy J, Naik N. A novel Schiff base derivative as a fluorescent probe for selective detection of Cu2+ ions in buffered solution at pH 7.5: Experimental and quantum chemical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zhang H, Chen Q, Ni P, Liang H, Mao M, Zou J. Study on the intelligent identification method of formation lithology by element and gamma spectrum. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-05714-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Park S, Suh B, Kim C. A chalcone-based fluorescent chemosensor for detecting Mg 2+ and Cd 2. LUMINESCENCE 2021; 37:332-339. [PMID: 34877783 DOI: 10.1002/bio.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
SBOD (sodium (E)-2-(3-[5-bromothiophen-2-yl]-3-oxoprop-1-en-1-yl)-4,6-dichlorophenolate) was designed and synthesized as a chalcone-based fluorescent turn-on chemosensor for Mg2+ and Cd2+ . SBOD selectively detected Mg2+ and Cd2+ through the increase in effective fluorescence. Detection limits of SBOD for Mg2+ and Cd2+ were calculated to be 3.8 μM and 2.9 μM, respectively. The binding modes of SBOD for Mg2+ and Cd2+ were determined to be 1:1 by ESI-MS and Job plot. Association mechanisms for SBOD to Mg2+ and Cd2+ were illustrated by ESI-MS, UV-vis, fluorescence spectroscopy, and calculations.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Boeon Suh
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Cheal Kim
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| |
Collapse
|
9
|
Computational and theoretical study of graphitic carbon nitride (g-C3N4) as a drug delivery carrier for lonidamine drug to treat cancer. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Munir I, Perveen M, Nazir S, Khera RA, Ayub AR, Ayub K, Iqbal J. Therapeutic potential of graphyne as a new drug-delivery system for daunorubicin to treat cancer: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Shamim M, Perveen M, Nazir S, Hussnain M, Mehmood R, Khan MI, Iqbal J. DFT study of therapeutic potential of graphitic carbon nitride (g-C3N4) as a new drug delivery system for carboplatin to treat cancer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Perveen M, Nazir S, Arshad AW, Khan MI, Shamim M, Ayub K, Khan MA, Iqbal J. Therapeutic potential of graphitic carbon nitride as a drug delivery system for cisplatin (anticancer drug): A DFT approach. Biophys Chem 2020; 267:106461. [DOI: 10.1016/j.bpc.2020.106461] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
|
13
|
A first principle photo-induced electron transfer study on a quinolin schiff base as Al3+ chemosensor using TD-DFT method. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ravichandiran P, Subramaniyan SA, Bella AP, Johnson PM, Kim AR, Shim KS, Yoo DJ. Simple Fluorescence Turn-On Chemosensor for Selective Detection of Ba 2+ Ion and Its Live Cell Imaging. Anal Chem 2019; 91:10095-10101. [PMID: 31248251 DOI: 10.1021/acs.analchem.9b02057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A phenoxazine-based fluorescence chemosensor 4PB [(4-(tert-butyl)-N-(4-((4-((5-oxo-5H-benzo[a]phenoxazin-6-yl)amino)phenyl)sulfonyl)phenyl)benzamide)] was designed and synthesized by a simple synthetic methods. The 4PB fluorescence chemosensor selectively detects Ba2+ in the existence of other alkaline metal ions. In addition, 4PB showed high selectivity and sensitivity for Ba2+ detection. The detection limit of 4PB was 0.282 μM and the binding constant was 1.0 × 106 M-1 in CH3CN/H2O (97.5:2.5 v/v, HEPES = 1.25 mM, pH 7.3) medium. This chemosensor functioned through the intramolecular charge transfer (ICT) mechanism, which was further confirmed by DFT studies. Live cell imaging in MCF-7 cells confirmed the cell permeability of 4PB and its capability for specific detection of Ba2+ in living cells.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research Center , Chonbuk National University , Jeollabuk-do 54896 , Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences , Chonbuk National University , Jeollabuk-do 54896 , Republic of Korea
| | - Antony Paulraj Bella
- PG and Research Department of Chemistry , Bishop Heber College , Tiruchirappalli - 620017 , Tamil Nadu India
| | - Princy Merlin Johnson
- PG and Research Department of Chemistry , Bishop Heber College , Tiruchirappalli - 620017 , Tamil Nadu India
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental Chemistry , Chonbuk National University , Jeollabuk-do 54896 , Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences , Chonbuk National University , Jeollabuk-do 54896 , Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research Center , Chonbuk National University , Jeollabuk-do 54896 , Republic of Korea
| |
Collapse
|
15
|
Taherpour A(A, Zolfaghar N, Jamshidi M, Jalilian J, Rezaei O, Shahri Z. Structural distortions of fullerene C60n (n = 0 to −6) by first principle density functional theory. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Tariq A, Nazir S, Arshad AW, Nawaz F, Ayub K, Iqbal J. DFT study of the therapeutic potential of phosphorene as a new drug-delivery system to treat cancer. RSC Adv 2019; 9:24325-24332. [PMID: 35527876 PMCID: PMC9069575 DOI: 10.1039/c9ra02778e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/14/2019] [Indexed: 02/04/2023] Open
Abstract
In this study, the therapeutic potential of phosphorene as a drug-delivery system for chlorambucil to treat cancer was evaluated. The geometric, electronic and excited state properties of chlorambucil, phosphorene and the phosphorene–chlorambucil complex were evaluated to explore the efficiency of phosphorene as a drug-delivery system. The nature of interaction between phosphorene and chlorambucil is illustrated through a non-covalent interaction (NCI) plot, which illustrated that weak forces of interaction are present between phosphorene and chlorambucil. These weak intermolecular forces are advantageous for an easy offloading of the drug at the target. Frontier molecular orbital analysis revealed that charge was transferred from chlorambucil to phosphorene during excitation from the HOMO to LUMO. The charge transfer was further supplemented by charge-decomposition analysis (CDA). Excited-state calculations showed that the λmax was red-shifted by 79 nm for the phosphorene–chlorambucil complexes. The photo-induced electron-transfer (PET) process was observed for different excited states, which could be well explained visually based on the electron–hole theory. The photo-induced electron transfer suggests that a quenching of fluorescence occurs upon interaction. This study confirmed that phosphorene possesses significant therapeutic potential as a drug-delivery system for chlorambucil to treat cancer. This study will also motivate further exploration of other 2D materials for drug-delivery applications. Therapeutic potential of phosphorene as drug delivery system for chlorambucil to treat cancer is evaluated. The photo-induced electron transfer suggests that phosphorene possess significant therapeutic potential as drug delivery system.![]()
Collapse
Affiliation(s)
- Amina Tariq
- Department of Chemistry
- University of Agriculture
- Faisalabad
- Pakistan
| | - Sidra Nazir
- Faisalabad Institute of Cardiology
- Faisalabad
- Pakistan
| | | | - Faisal Nawaz
- University of Engineering and Technology, Lahore
- Pakistan
| | - Khurshid Ayub
- Department of Chemistry
- COMSAT University Islamabad
- Pakistan
| | - Javed Iqbal
- Department of Chemistry
- University of Agriculture
- Faisalabad
- Pakistan
- Punjab Bio-energy Institute
| |
Collapse
|
17
|
Roy RS, Nandi PK. Electronic structure and large second-order non-linear optical property of COT derivatives - a theoretical exploration. Phys Chem Chem Phys 2018; 20:18744-18755. [PMID: 29961775 DOI: 10.1039/c8cp00163d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new strategy to design new molecules based on a fused hydrocarbon ring system comprising a COT ring and two 5-membered rings has been proposed for the study of second order NLO properties. The four charge transferring groups -NR2 (R = H, Li, Na and K) in conjunction with a sufficient number of electron withdrawing groups lead to significant variation of structural parameters and polarity. The charge transfer characteristics can be strongly modulated by introducing calcium metal atoms at suitable sites. Ca metal atoms end-capping the nitrogen ends of two adjacent -CN groups lead to electride character while a Ca metal atom bonded directly to the COT ring leads to greater charge transfer. The size of the alkali metal atom has been found to have a dramatic effect on the enhancement of first hyperpolarizability. The most significant electronic asymmetry induced by the larger potassium metal atom strongly enhances the magnitude of first hyperpolarizability. The variation of first hyperpolarizability has been satisfactorily explained in terms of TD-CAMB3LYP calculated spectroscopic parameters in light of the two-state model.
Collapse
Affiliation(s)
- Ria Sinha Roy
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | | |
Collapse
|
18
|
Taherpour A(A, Jamshidi M, Rezaei O, Belverdi AR. Photoinduced electron transfer process on emission spectrum of N,N′-bis(salicylidene)-1,2-phenylenediamine as a Mg2+ cation chemosensor: A first principle DFT and TDDFT study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Recent advances in magnesium assessment: From single selective sensors to multisensory approach. Talanta 2018; 179:430-441. [DOI: 10.1016/j.talanta.2017.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
20
|
Taherpour A(A, Shahri Z, Rezaei O, Jamshidi M, Fellowes T. Adsorption, intercalation and sensing of helium on yttrium functionalized open edge boron nitride: A first principle DFT and TDDFT study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Recognition of switching on or off fluorescence emission spectrum on the Schiff-bases as a Mg2+ chemosensor: A first principle DFT and TD-DFT study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Rahimi F, Zabaradsti A. Photo-Induced Electron Transfer Process on Pristine and Sc-Substituted B12N12 Nanocage as H2S Chemosensor: A Fully DFT and TD-DFT Study. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0640-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Taherpour AA, Jamshidi M, Rezaei O. DFT and TD-DFT theoretical studies on photo-induced electron transfer process on [Cefamandole].C60 nano-complex. J Mol Graph Model 2017; 75:42-48. [DOI: 10.1016/j.jmgm.2017.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/17/2023]
|
24
|
Hu JH, Li JB, Sun Y, Pei PX, Qi J. A turn-on fluorescent chemosensor based on acylhydrazone for sensing of Mg2+ with a low detection limit. RSC Adv 2017. [DOI: 10.1039/c7ra04462c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel highly selective chemosensor for Mg2+ ions based on the naphthalene group as the fluorophore has been designed and synthesized, which shows a fluorescence turn-on response from colorless to green for Mg2+ ions in DMSO–H2O solutions.
Collapse
Affiliation(s)
- Jing-Han Hu
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Jian-Bin Li
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - You Sun
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Peng-Xiang Pei
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Jing Qi
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| |
Collapse
|