Jiao C, Pang J, Shen L, Lu W, Zhang P, Liu Y, Li J, Jia X, Wang Y. A “weak acid and weak base” type fluorescent probe for sensing pH: mechanism and application in living cells.
RSC Adv 2019;
9:20982-20988. [PMID:
35515522 PMCID:
PMC9066030 DOI:
10.1039/c9ra03203g]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
A simple pH fluorescent probe, N-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) isonicotinamide (NDI), based on naphthalimide as the fluorophore and isonicotinic acid hydrazide as the reaction site was synthesized and characterized. It is useful for monitoring acidic and alkaline pH. The results of pH titration indicated that NDI exhibits obvious emission enhancement with a pKa of 4.50 and linear response to small pH fluctuations within the acidic range of 3.00–6.50. Interestingly, NDI also displayed strong pH-dependent characteristics with pKa 9.34 and linearly responded to an alkaline range of 8.30–10.50. The sensing response mechanism was confirmed by 1H NMR and ESI-MS spectroscopy. The mechanism of the optical responses of NDI toward pH was also determined by density functional theory (DFT) calculations. In addition, NDI displayed a highly selective and sensitive response to hydrogen ions and hydroxyl ions. The probe was successfully applied to image acidic and alkaline pH value fluctuations in HeLa cells and has lysosomal targeting ability.
When the probe was in the protonation process, the fluorescence intensity gradually decreased, whereas when the probe was in the deprotonation process, the fluorescence intensity gradually increased.![]()
Collapse