1
|
Luder DJ, Terefenko N, Sun Q, Eckert H, Mück-Lichtenfeld C, Kehr G, Erker G, Wiegand T. Polar covalent apex-base bonding in borapyramidanes probed by solid-state NMR and DFT calculations. Chemistry 2024; 30:e202303701. [PMID: 38078510 DOI: 10.1002/chem.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 01/04/2024]
Abstract
Pyramidane molecules have attracted chemists for many decades due to their regular shape, high symmetry and their correspondence in the macroscopic world. Recently, experimental access to a number of examples has been reported, in particular the rarely reported square pyramidal bora[4]pyramidanes. To describe the bonding situation of the nonclassical structure of pyramidanes, we present solid-state Nuclear Magnetic Resonance (NMR) as a versatile tool for deciphering such bonding properties for three now accessible bora[4]pyramidane and dibora[5]pyramidane molecules. 11 B solid-state NMR spectra indicate that the apical boron nuclei in these compounds are strongly shielded (around -50 ppm vs. BF3 -Et2 O complex) and possess quadrupolar coupling constants of less than 0.9 MHz pointing to a rather high local symmetry. 13 C-11 B spin-spin coupling constants have been explored as a measure of the bond covalency in the borapyramidanes. While the carbon-boron bond to the -B(C6 F5 )2 substituents of the base serves as an example for a classical covalent 2-center-2-electron (2c-2e) sp2 -carbon-sp2 -boron σ-bond with 1 J(13 C-11 B) coupling constants in the order of 75 Hz, those of the boron(apical)-carbon(basal) bonds in the pyramid are too small to measure. These results suggest that these bonds have a strongly ionic character, which is also supported by quantum-chemical calculations.
Collapse
Affiliation(s)
- Dominique J Luder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Nicole Terefenko
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Qiu Sun
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Hellmut Eckert
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
- Institut für Physikalische Chemie, University of Münster, Corrensstr. 30, 48149, Münster, Germany
| | | | - Gerald Kehr
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Gerhard Erker
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| |
Collapse
|
2
|
Aysin R, Bukalov S. Four electron aromaticity in η3-Allyltetrylenes Ar-E-η3-Allyl E= Si, Ge, Sn, Pb. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Aysin RR, Bukalov SS. Three dimensional aromaticity in pyramidanes C4R4E and Ge4R4Ge. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Aysin RR, Bukalov SS, Leites LA, Zabula AV. Optical spectra, electronic structure and aromaticity of benzannulated N-heterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb). Dalton Trans 2017; 46:8774-8781. [DOI: 10.1039/c7dt00356k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromaticity of carbene analogues of the type C6H4(NR)2E: (E = C–Pb) has been established by Raman, UV-vis, ISE, NICS and ACID methods.
Collapse
Affiliation(s)
- Rinat R. Aysin
- Scientific and Technical Center on Raman Spectroscopy
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Sergey S. Bukalov
- Scientific and Technical Center on Raman Spectroscopy
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Larissa A. Leites
- Scientific and Technical Center on Raman Spectroscopy
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Alexander V. Zabula
- P. Roy and Diana T. Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|