1
|
Mancuso F, Fornasiero P, Prato M, Melchionna M, Franco F, Filippini G. Nanostructured electrocatalysts for organic synthetic transformations. NANOSCALE 2024; 16:5926-5940. [PMID: 38441238 DOI: 10.1039/d3nr06669j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.
Collapse
Affiliation(s)
- Francesco Mancuso
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE) Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Foundation for Science Ikerbasque, 48013 Bilbao, Spain
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Federico Franco
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
2
|
Xiang R, Wang S, Liao P, Xie F, Kang J, Li S, Xian J, Guo L, Li G. Electrocatalytic Synthesis of Pyridine Oximes using in Situ Generated NH 2 OH from NO species on Nanofiber Membranes Derived from NH 2 -MIL-53(Al). Angew Chem Int Ed Engl 2023; 62:e202312239. [PMID: 37728507 DOI: 10.1002/anie.202312239] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Pyridine oximes produced from aldehyde or ketone with hydroxylamine (NH2 OH) have been widely applied in pharmaceutics, enzymatic and sterilization. However, the important raw material NH2 OH exhibits corrosive and unstable properties, leading to substantial energy consumption during storage and transportation. Herein, this work presents a novel method for directly synthesizing highly valuable pyridine oximes using in situ generated NH2 OH from electrocatalytic NO reduction with well-design nanofiber membranes (Al-NFM) derived from NH2 -MIL-53(Al). Particularly, 2-pyridinealdoxime, the precursor of antidote pralidoxime (2-PAM) for nerve agents suffering from scarcity and high cost, was achieved with a Faraday efficiency up to 49.8 % and a yield of 92.1 %, attributing to the high selectivity of NH2 OH production on Al-NFM, further easily reacted with iodomethane to produce 2-PAM. This study proposes a creative approach, having wide universality for synthesizing pyridine and other oximes with a range of functional groups, which not only facilitates the conversion of exhaust gas (NO) and waste water (NO2 - ) into valuable chemicals especially NH2 OH production and in situ utilization through electrochemistry, but also holds significant potential for synthesis of neuro detoxifying drugs to humanity security.
Collapse
Affiliation(s)
- Runan Xiang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peisen Liao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-Sen University, No.135, Xingangxi Road, Guangzhou, 510275, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Suisheng Li
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Linna Guo
- Instrumental Analysis & Research Center, Sun Yat-Sen University, No.135, Xingangxi Road, Guangzhou, 510275, China
| | - Guangqin Li
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Parus A, Framski G. Impact of O-alkyl-pyridineamidoximes on the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1278-1284. [PMID: 30189544 DOI: 10.1016/j.scitotenv.2018.06.266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Pyridine derivatives such as oximes and amidoximes are widely used in pharmaceutical, analytical and coordination chemistry. Increasing interest in this group of compounds as well as their complexing properties and surface activity resulted in their introduction into the environment and change of the ecosystem functioning. Based on this phenomenon, the evaluation of impact O-alkyl-pyridineamidoximes on the soil environment was determined by analysis of changes of metal mobility in soil and plant seed germination. The obtained results indicate that O-propyl-pyridineamidoximes may change the mobility of metals in soil and influence the germination and development of plants. The introduction of these compounds to soil resulted in the reduction of metal (Cu, Pb, Fe) mobility in the soil matrix. This effect resulted in the retention of metals in the soil and inhibition of their mobility. This phenomenon suggests the possibility of using the analyzed compounds in the remediation process as a stabilizing factor. Pyridineamidoximes at a concentration below 100 mg/kg of soil did not influence the seed germination and plant development.
Collapse
Affiliation(s)
- Anna Parus
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland.
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
5
|
New hybrid of the barbituric acid motif: synthesis, X-ray single crystal, DFT, and Hirshfeld surface analyses. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|