1
|
Ansari S, Zia MK, Ahsan H, Hashmi MA, Khan FH. Binding characteristics and conformational changes in alpha-2-macroglobulin by the dietary flavanone naringenin: biophysical and computational approach. J Biomol Struct Dyn 2024; 42:7485-7500. [PMID: 37498152 DOI: 10.1080/07391102.2023.2240420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
In the present study, we investigated the interaction of alpha-2-macroglobulin (α2M) with naringenin using multi-spectroscopic, molecular docking, and molecular simulation approaches to identify the functional changes and structural variations in the α2M structure. Our study suggests that naringenin compromised α2M anti-proteinase activity. The results of absorption spectroscopy and fluorescence measurement showed that naringenin-α2M formed a complex with a binding constant of (kb)∼104, indicative of moderate binding. The value of ΔG° in the binding indicates the process to be spontaneous and the major force responsible to be hydrophobic interaction. The findings of FRET reveal the binding distance between naringenin and the amino acids of α2M was 2.82 nm. The secondary structural analysis of α2M with naringenin using multi-spectroscopic methods like synchronous fluorescence, red-edge excitation shift (REES), FTIR, and CD spectra further confirmed the significant conformational alterations in the protein. Molecular docking approach reveals the interactions between naringenin and α2M to be hydrogen bonds, van der Waals forces, and pi interactions, which considerably favour and stabilise the binding. Molecular dynamics modelling simulations also supported the steady binding with the least RMSD deviations. Our study suggests that naringenin interacts with α2M to alter its confirmation and compromise its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Ansari S, Zia MK, Fatima S, Ahsan H, Khan FH. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach : Interaction of morin with α 2M. J Biol Phys 2023; 49:235-255. [PMID: 36913165 PMCID: PMC10160284 DOI: 10.1007/s10867-023-09629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamila Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
4
|
Exploring the interaction of myricetin with human alpha-2-macroglobulin: biophysical and in-silico analysis. J Biol Phys 2023; 49:29-48. [PMID: 36662317 PMCID: PMC9867608 DOI: 10.1007/s10867-022-09621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
Myricetin (MYR) is a bioactive secondary metabolite found in plants that is recognized for its nutraceutical value and is an essential constituent of various foods and beverages. It is reported to exhibit a plethora of activities, including antioxidant, antimicrobial, antidiabetic, anticancer, and anti-inflammatory. Alpha-2-macroglobulin (α2M) is a major plasma anti-proteinase that can inhibit proteinases of both human and non-human origin, regardless of their specificity and catalytic mechanism. Here, we explored the interaction of MYR-α2M using various biochemical and biophysical techniques. It was found that the interaction of MYR brings subtle change in its anti-proteolytic potential and thereby alters its structure and function, as can be seen from absorbance and fluorescence spectroscopy. UV spectroscopy of α2M in presence of MYR indicated the occurrence of hyperchromism, suggesting complex formation. Fluorescence spectroscopy reveals that MYR reduces the fluorescence intensity of native α2M with a shift in the wavelength maxima. At 318.15 K, MYR binds to α2M with a binding constant of 2.4 × 103 M-1, which indicates significant binding. The ΔG value was found to be - 7.56 kcal mol-1 at 298.15 K, suggesting the interaction to be spontaneous and thermodynamically favorable. The secondary structure of α2M does not involve any major change as was confirmed by CD analysis. The molecular docking indicates that Asp-146, Ser-172, Glu-174, and Tyr-180 were the key residues involved in α2M-MYR complex formation. This study contributes to our understanding of the function and mechanism of protein and flavonoid binding by providing a molecular basis of the interaction between MYR and α2M.
Collapse
|
5
|
Sun M, Liu H, Xu C, Jiang Z, Lv C. Inhibition of Iron Release from Donkey Spleen Ferritin through Malt-Derived Protein Z-Ferulic Acid Interactions. Foods 2023; 12:foods12020234. [PMID: 36673326 PMCID: PMC9857996 DOI: 10.3390/foods12020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Protein-small molecule interactions naturally occur in foodstuffs, which could improve the properties of protein and small molecules. Meanwhile, they might affect the bioavailability and nutritional value of proteins. Ferritin, as an iron-storage protein, has been a focus of research. However, the complexity of foodstuffs enables the interaction between ferritin and food components, especially polyphenols, which can induce iron release from ferritin. Thus, the application of ferritin in food is limited. Inspired by the natural-occurring, strong protein-polyphenol interactions in beer, to inhibit the iron release of ferritin, the malt-derived protein Z (PZ) was chosen to interact with ferulic acid (FA), an abundant reductant in malt, beer, and other foodstuffs. The analysis of the interaction between PZ and FA was carried out using fluorescence spectroscopy, the results of which suggest that one PZ molecule can bind with 22.11 ± 2.13 of FA, and the binding constant is (4.99 ± 2.13) × 105 M-1. In a molecular dynamics (MD) simulation, FA was found to be embedded in the internal hydrophobic pocket of PZ, where it formed hydrogen bonds with Val-389 and Tyr-234. As expected, compared to iron release induced by FA, the iron release from donkey spleen ferritin (DSF) induced by FA decreased by 86.20% in the presence of PZ. Meanwhile, based on the PZ-FA interaction, adding PZ in beer reduced iron release from DSF by 40.5% when DSF:PZ was 1:40 (molar ratio). This work will provide a novel method of inhibiting iron release from ferritin.
Collapse
|
6
|
Dixit S, Ahsan H, Khan FH. Interaction of Synthetic Pyrethroid Insecticide Deltamethrin with Human
Alpha-2-Macroglobulin: Spectroscopic and Molecular Docking Studies. Protein Pept Lett 2022; 29:284-292. [DOI: 10.2174/0929866529666220203095706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
Background:
Deltamethrin (DLM) is a commercial insecticide of the synthetic
pyrethroid family that is used to control disease-causing insects and vectors. When humans are exposed
to the fumes or aerosols of DLM, it enters the body via cuticular absorption and reacts with
proteins and other biomolecules.
Objective:
Alpha-2-macroglobulin (α2M) is a serum proteinase inhibitor that also carries out receptor-
mediated endocytosis of extracellular substances. This study was done to decipher the structural
and functional alterations of α2M by DLM.
Method:
Various spectroscopic techniques, including UV absorption and fluorescence spectroscopy,
binding studies, and molecular docking, were used to characterize the interaction of DLM
with α2M. The affinity constant was calculated from the Stern-Volmer equation using fluorescence
data.
Results:
The UV-Vis and fluorescence spectral studies indicated the formation of a complex between
α2M and DLM. Thermodynamically, the interaction was found to be spontaneous with ΔG =
-4.23 kcal/mol. CD spectra suggested a change in the secondary structure of the protein from β to α
helical content with increasing concentration of DLM. The molecular docking study by Autodock
Vina established the interaction of DLM with Glu-926, Ala-1103, Ala-1108, Val-1116, Asn-1159,
Glu-1220, Leu-1261, Thr-1272, Ile-1390, Pro-1391, Lys-1393, Val-1396, Lys-1397, Thr-1408,
Glu-1409, Val-1410, Ser-1411, Ser-1412, and Asn-1413 with an improved docking score of -6.191
kcal/mol. The binding was carried out in the vicinity of the receptor-binding domain at the C-terminal
of α2M.
Conclusion:
The decrease in the functional activity and structural changes of protein after binding
with DLM has a significant effect on human α2M. The information may be useful for exploring the
role of DLM in a clinical chemistry laboratory.
Collapse
Affiliation(s)
- Swati Dixit
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Haseeb Ahsan
- Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Dixit S, Zia MK, Siddiqui T, Ahsan H, Khan FH. Interaction of Human Alpha-2-Macroglobulin with Pesticide Aldicarb Using Spectroscopy and Molecular Docking. Protein Pept Lett 2021; 28:315-322. [PMID: 32957873 DOI: 10.2174/0929866527666200921165834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldicarb is a carbamate pesticide commercially used in potato crop production. Once it enters human body, it interacts with diverse proteins and other substances. OBJECTIVE Aldicarb is toxic to human health and it is also a cholinesterase inhibitor, which prevents the breakdown of acetylcholine in synapse. Human alpha-2-macroglobulin (α2M), is a large tetrameric glycoprotein of 720 kDa with antiproteinase activity, found abundantly in plasma. METHODS In the present study, the interaction of aldicarb with alpha-2-macroglobulin was explored utilizing various spectroscopic techniques and molecular docking studies. RESULTS UV-vis and fluorescence spectroscopy suggests the formation of a complex between aldicarb and α2M apparent by increased absorbance and decreased fluorescence with static quenching mode. CD spectroscopy indicates a slight change in the structure of alpha-2-macroglobulin. Docking studies confirm the interaction of aldicarb with Pro- 1391, Leu-1392, Lys-1393, Val-1396, Lys- 1397, Thr-1408, Glu-1409, Val-1410, Asp-282 and Glu-281 in the receptor binding domain at the C-terminal of the alpha 2 macroglobulin. DISCUSSION In this work, aldicarb is shown to bind with alpha 2-macroglobulin at receptor binding domain which is the binding site for various extracellular and intracellular ligand too. Also, affecting the functional activity of the protein may lead to further physiological consequences. CONCLUSION It is possible that aldicarb binds and compromises antiproteinase activity of α2M and binding properties by inducing changes in the secondary structure of the protein.
Collapse
Affiliation(s)
- Swati Dixit
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Antipsychotic clozapine binding to alpha-2-macroglobulin protects interacting partners against oxidation and preserves the anti-proteinase activity of the protein. Int J Biol Macromol 2021; 183:502-512. [PMID: 33930446 DOI: 10.1016/j.ijbiomac.2021.04.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022]
Abstract
In this study, the interaction between clozapine, an atypical antipsychotic drug, and alpha-2-macroglobulin (α2M), a multipurpose anti-proteinase, was investigated under simulated (patho) physiological conditions using multiple spectroscopic techniques and molecular modeling. It was found that α2M binds clozapine with a moderate affinity (the binding constant of 0.9 × 105 M-1 at 37 °C). The preferable binding site for both clozapine's atropisomers was revealed to be a large pocket at the interface of C and D monomer subunits of the protein. Hydrogen bonds and the hydrophobic effect were proposed as dominant forces in complex formation. The binding of clozapine did not induce significant conformational change of the protein, as confirmed by virtually unaltered α2M secondary structure and anti-proteinase activity. However, both clozapine and α2M shielded each other from the deleterious influence of strong oxidants: sodium hypochlorite and 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH). Moreover, clozapine in a concentration range that is usually targeted in the plasma during patients' treatment effectively protected the anti-proteinase activity of α2M under AAPH-induced free radical overproduction. Our results suggest that the cooperation between α2M and clozapine may be a path by which these two molecules synergistically protect neural tissue against injury caused by disturbed proteostasis or oxidative stress.
Collapse
|
9
|
Siddiqui T, Zia MK, Ali SS, Ahsan H, Khan FH. Investigating hydrogen peroxide induced damage to alpha-2-macroglobulin: Biophysical and thermodynamic study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Inactivation of Alpha-2-Macroglobulin by Photo-Illuminated Gallic Acid. J Fluoresc 2019; 29:969-979. [DOI: 10.1007/s10895-019-02410-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
11
|
Zia MK, Siddiqui T, Ali SS, Ahsan H, Khan FH. Deciphering the binding of dutasteride with human alpha-2-macroglobulin: Molecular docking and calorimetric approach. Int J Biol Macromol 2019; 133:1081-1089. [DOI: 10.1016/j.ijbiomac.2019.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
12
|
Ali SS, Zia MK, Siddiqui T, Ahsan H, Khan FH. Biophysical analysis of interaction between curcumin and alpha-2-macroglobulin. Int J Biol Macromol 2019; 128:385-390. [DOI: 10.1016/j.ijbiomac.2019.01.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
|
13
|
Ali SS, Zia MK, Siddiqui T, Khan FH. Binding interaction of sheep alpha-2-macroglobulin and tannic acid: A spectroscopic and thermodynamic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:748-753. [PMID: 30007881 DOI: 10.1016/j.saa.2018.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Tannic acid is a polyphenol found in plant species commonly consumed by ruminants. It works as an important molecule in plant defense system to fight against environmental stressors. Tannic acid has number of effects on animals and humans. An attempt has been made to study the interaction of tannic acid with alpha-2-macroglobulin (α2M). α2M is a large tetrameric glycoprotein which function as a key serum anti-proteinase under physiological conditions. In the present study we explored the tannic acid-α2M interaction by number of spectroscopic techniques such as UV, fluorescence, CD and FTIR along with isothermal titration calorimetry. CD and FT-IR spectroscopy were mainly used to study the secondary structural change induced in the antiproteinase. Analysis of activity shows the antiproteolytic potential of protein was compromised. Data of UV spectroscopy shows formation of α2M-tannic acid complex. The thermodynamic signatures of this interaction reveals hydrogen bonding played a major role in the binding of α2M-tannic acid. Analysis of CD and FTIR results suggest a minor conformational change in α2M on tannic acid binding. Overall, tannic acid induces subtle conformation change in α2M structure resulting the loss of its proteinase inhibitory activity.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
14
|
Jia J, Wang Y, Liu Y, Xiang Y. Exploration of interaction of canthaxanthin with human serum albumin by spectroscopic and molecular simulation methods. LUMINESCENCE 2017; 33:425-432. [PMID: 29251407 DOI: 10.1002/bio.3430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three-dimensional fluorescence spectra, synchronous fluorescence spectra, UV-vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three-dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.
Collapse
Affiliation(s)
- Jie Jia
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuxian Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|