Ma H, Liu S, Zhu L, Ma C, Han X, He C, Zhao B. Vibrational spectroscopy and DFT analysis of 4-cyanophenylhydrazine: A potential SERS probe.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;
253:119574. [PMID:
33640624 DOI:
10.1016/j.saa.2021.119574]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
4-Cyanophenylhydrazine (4-CPH) is an organic synthesis intermediate. To date, several products derived from 4-CPH have been well studied; however, 4-CPH itself has not been extensively investigated. Herein, we performed vibrational and theoretical analyses of 4-CPH. Density functional theory (DFT) calculations were applied to predict the IR and Raman spectra of 4-CPH, which were compared with the experimental spectra. The calculated and experimental spectral results were in good agreement, except for an abnormal transformation of the protonated 4-CPH cyano group (C≡N), which was observed in the theoretical IR spectrum. Several wavefunction analyses revealed that this transformation was due to the protonation-induced depolarization of the molecule. Moreover, we verified the applicability of 4-CPH as a probe for surface-enhanced Raman spectroscopy (SERS). We observed a pH-dependent shift in the cyano bond frequency within the silent region and determined, as a novel discovery, that this shift was induced by 4-CPH protonation. Our results provide considerable, fundamental information that confirms the potential of 4-CPH as a SERS probe.
Collapse