Wu X, Zhou X, Hemberger P, Bodi A. A guinea pig for conformer selectivity and mechanistic insights into dissociative ionization by photoelectron photoion coincidence: fluorocyclohexane.
Phys Chem Chem Phys 2020;
22:2351-2360. [PMID:
31934711 DOI:
10.1039/c9cp05617c]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied fluorocyclohexane (C6H11F, FC6) by double imaging photoelectron photoion coincidence spectroscopy in the 9.90-13.90 eV photon energy range. The photoelectron spectrum can identify species isomer and, in this case, even conformer selectively. Ab initio results indicated that the axial conformer has two, close-lying cation electronic states. With the help of Franck-Condon simulations of the vibrational fine structure, we determined the origin of three transitions, (i) axial FC6 → axial FC6+ of C1 symmetry (X[combining tilde]+, A'' in CS), (ii) equatorial FC6 → equatorial FC6+ of C1 symmetry (X[combining tilde]+, A'' in CS), and (iii) axial FC6 → A' axial FC6+ of CS symmetry (Ã+) as 10.12 ± 0.01, 10.15 ± 0.01 and 10.15 ± 0.02 eV, respectively. At slightly higher energies, the FC6 cation starts fragmenting by HF loss (E0 = 10.60 eV), followed by sequential CH3 (E0 = 10.71 eV) or C2H4 (E0 = 11.06 eV) loss. Surprisingly, the methyl-loss step has an effective barrier of only 0.11 eV, and yet it is a slow process at threshold. Based on the statistical model, this is explained by isomerization and stabilization of the C6H10+ intermediate. The highest energy channel observed, vinyl fluoride (C2H3F) loss yielding C4H8+ appears in the breakdown diagram at 12 eV, which agrees with the computed threshold to cyclobutane cation formation. However, the model predicted a ca. 1 eV competitive shift for this parallel channel, i.e., an E0 = 11.23 eV. This led us to explore the potential energy surface to find a lower-lying fragmentation channel including H-transfer steps. Rate constant measurements and statistical modeling thus yield fundamental insights into the reaction mechanism beyond what is immediately seen in the mass spectra.
Collapse