1
|
Hanuman S, B HK, Pai KSR, Nune M. Surface-Conjugated Galactose on Electrospun Polycaprolactone Nanofibers: An Innovative Scaffold for Uterine Tissue Engineering. ACS OMEGA 2024; 9:34314-34328. [PMID: 39157094 PMCID: PMC11325431 DOI: 10.1021/acsomega.3c10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
The uterus, a vital organ in the female reproductive system, nurtures and supports developing embryos until maturity. This study focuses on addressing uterine related problems by creating a nanofibrous scaffold to regenerate uterine myometrial tissue, closely resembling the native extracellular matrix (ECM) for enhanced efficacy. To achieve this, we utilized polycaprolactone (PCL) as a biomaterial and employed an electrospinning technique to generate PCL nanofibers in both random and aligned orientations. Due to the inherent hydrophobic nature of PCL nanofibers, a two-step wet chemistry surface modification technique is used, involving the conjugation of galactose onto them. Galactose, a lectin-binding sugar, was chosen to enhance the scaffold's hydrophilicity, thereby improving cell adhesion and fostering l-selectin-based interactions between the scaffold and uterine cells. These interactions, in turn, activated uterine fibroblasts, leading to ECM remodeling. The optimized electrospinning process successfully generated random and aligned nanofibers. Subsequent surface modification was carried out, and the modified scaffold was subjected to various physicochemical characterization, such as the ninhydrin assay, enzyme-linked lectin assay techniques that revealed successful galactose conjugation, and mechanical characterization to assess any changes in material bulk properties resulting from the modification. The tensile strength of random galactose-modified PCL fibers reached 0.041 ± 0.01 MPa, outperforming random unmodified PCL fibers (0.026 ± 0.01 MPa), aligned unmodified PCL fibers (0.011 ± 0.001 MPa), and aligned modified PCL fibers (0.016 ± 0.002 MPa). Cytocompatibility studies with human uterine fibroblast cells showed enhanced viability and proliferation on the modified scaffolds. Initial pilot studies were attempted in the current study involving subcutaneous implantation in the dorsal area of Wistar rats to assess biocompatibility and tissue response before proceeding to intrauterine implantation indicated that the modification did not induce adverse inflammation in vivo. In conclusion, our study introduces a surface-modified PCL nanofibrous material for myometrial tissue engineering, offering promise in addressing myometrial damage and advancing uterine health and reproductive well-being.
Collapse
Affiliation(s)
- Srividya Hanuman
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Harish Kumar B
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K. Sreedhara Ranganath Pai
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Manasa Nune
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
2
|
Hussain Z, Ding P, Zhang L, Zhang Y, Ullah S, Liu Y, Ullah I, Wang Z, Zheng P, Pei R. Multifaceted tannin crosslinked bioinspired dECM decorated nanofibers modulating cell-scaffold biointerface for tympanic membrane perforation bioengineering. Biomed Mater 2022; 17. [PMID: 35334475 DOI: 10.1088/1748-605x/ac6125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Tympanic membrane (TM) perforation leads to persistent otitis media, conductive deafness, and affects life quality. Ointment medication may not be sufficient to treat TM perforation due to the lack of an underlying tissue matrix and thus requiring a scaffold-based application. The engineering of scaffold biointerface close to the matrix via tissue-specific decellularized extracellular matrix (dECM) is crucial in instructing cell behaviour and regulating cell-material interaction in the bioengineering domain. Herein, polycaprolactone (PCL) and TM-dECM (from SD rats) were combined in a different ratio in nanofibrous form using an electrospinning process and crosslinked via tannic acid. The histological and biochemical assays demonstrated that chemical and enzymatic decellularization steps removed cellular/immunogenic contents while retaining collagen and glycosaminoglycan. The morphological, physicochemical, thermomechanical, contact angle, and surface chemical studies demonstrated that the tannin crosslinked PCL/dECM nanofibers fine-tune biophysical and biochemical properties. The multifaceted crosslinked nanofibers hold the tunable distribution of dECM moieties, assembled into a spool-shaped membrane, and could easily insert into perforated sites. The dECM decorated fibers provide a preferable biomimetic matrix for L929 fibroblast adhesion, proliferation, matrix adsorption, and f-actin saturation, which could be crucial for bioengineering. Overall, dECM patterning, surface hydrophilicity, interconnected microporosities, and multifaceted nanofibrous biosystem modulate cell-scaffold performance and could open opportunities to reconstruct TM perforation in a biomimetic fashion.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Pi Ding
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Penghui Zheng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| |
Collapse
|
3
|
Guizzardi R, Zamuner A, Brun P, Dettin M, Natalello A, Cipolla L. Thymosin‐β4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Guizzardi
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
- Present address: Tecnoservizi ambientali s.r.l
| | - Annj Zamuner
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Paola Brun
- Dept. of Molecular Medicine University of Padova Via Gabelli, 63 35121 Padova Italy
| | - Monica Dettin
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Antonino Natalello
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| | - Laura Cipolla
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| |
Collapse
|
4
|
Hanuman S, Nune M. Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering.
Methods
Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds.
Results
Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth.
Conclusion
Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration.
Lay Summary and Future Work
Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development.
Graphical Abstract
Collapse
|
5
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
6
|
A Pellet 3D Printer: Device Design and Process Parameters Optimization. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/5075327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel pellet 3D printer was first developed, and its structure was constructed out of three main parts. The material used in this device was polycaprolactone (PCL), which was praised for its good characteristics in the biomanufacturing and chemical industries. Three essential parameters that had important effects on the diameter of the printed fibers were systematically studied using a L9(34) orthogonal design table. Using the fused deposition modelling (FDM) method, some products were printed with this machine. Results showed that the stepper motor’s speed had the most significant effect on the diameter of the printed fibers. The optimal parameters were, a stepper motor speed of 1.256 mm3 s−1, a nozzle moving speed of 9.6 mm s−1, and 1.1 mm of height between the nozzle and the platform. Defects like gaps, warping, and poor surface quality were found to be related to different combinations of process parameters. By using the developed pellet 3D printer, the pre-step of making filaments can be avoided, which will bring convenience to FDM 3D printing.
Collapse
|
7
|
Secchi V, Franchi S, Ciccarelli D, Dettin M, Zamuner A, Serio A, Iucci G, Battocchio C. Biofunctionalization of TiO 2 Surfaces with Self-Assembling Layers of Oligopeptides Covalently Grafted to Chitosan. ACS Biomater Sci Eng 2019; 5:2190-2199. [PMID: 33405771 DOI: 10.1021/acsbiomaterials.9b00430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the field of tissue engineering, a promising approach to obtain a bioactive, biomimetic, and antibiotic implant is the functionalization of a "classical" biocompatible material, for example, titanium, with appropriate biomolecules. For this purpose, we propose preparing self-assembling films of multiple components, allowing the mixing of different biofunctionalities "on demand". Self-assembling peptides (SAPs) are synthetic materials characterized by the ability to self-organize in nanostructures both in aqueous solution and as thin or thick films. Moreover, ordered layers of SAPs adhere on titanium surface as a scaffold coating to mimic the extracellular matrix. Chitosan is a versatile hydrophilic polysaccharide derived from chitin, with a broad antimicrobial spectrum to which Gram-negative and Gram-positive bacteria and fungi are highly susceptible, and is already known in the literature for the ability of its derivatives to firmly graft titanium alloys and show protective effects against some bacterial species, either alone or in combination with other antimicrobial substances such as antibiotics or antimicrobial peptides. In this context, we functionalized titanium surfaces with chitosan grafted to EAK16-II (a SAP), obtaining layer-by-layer structures of different degrees of order, depending on the preparative stoichiometry and path. The chemical composition, molecular structure, and arrangement of the obtained biofunctionalized surfaces were investigated by surface-sensitive techniques such as reflection-absorption infrared spectroscopy (RAIRS) and state-of-the-art synchrotron radiation-induced spectroscopies as X-ray photoemission spectroscopy (SR-XPS), and near-edge X-ray absorption fine structure (NEXAFS). Furthermore, was demonstrated that surfaces coated with EAK and Chit-EAK can support hNPs cell attachment and growth.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Science, Roma Tre University of Rome Via della Vasca Navale 79, Rome 00146, Italy
| | - Stefano Franchi
- Elettra-Sincrotrone Trieste S.c.p.A., Strada statale 14, km 163.5, Basovizza (Trieste) 34149, Italy
| | - Davide Ciccarelli
- Department of Science, Roma Tre University of Rome Via della Vasca Navale 79, Rome 00146, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua 35131, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua 35131, Italy
| | - Andrea Serio
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Giovanna Iucci
- Department of Science, Roma Tre University of Rome Via della Vasca Navale 79, Rome 00146, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University of Rome Via della Vasca Navale 79, Rome 00146, Italy
| |
Collapse
|