1
|
Khan S, Zahoor M, Rahman MU, Gul Z. Cocrystals; basic concepts, properties and formation strategies. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Cocrystallization is an old technique and remains the focus of several research groups working in the field of Chemistry and Pharmacy. This technique is basically in field for improving physicochemical properties of material which can be active pharmaceutical ingredients (APIs) or other chemicals with poor profile. So this review article has been presented in order to combine various concepts for scientists working in the field of chemistry, pharmacy or crystal engineering, also it was attempt to elaborate concepts belonging to crystal designing, their structures and applications. A handsome efforts have been made to bring scientists together working in different fields and to make chemistry easier for a pharmacist and pharmacy for chemists pertaining to cocrystals. Various aspects of chemicals being used as co-formers have been explored which predict the formation of co-crystals or molecular salts and even inorganic cocrystals.
Collapse
Affiliation(s)
- Shahab Khan
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Mudassir Ur Rahman
- Department of Chemistry , Government Degree College Lundkhwar , Mardan 23130 , Khyber Pakhtunkhwa , Pakistan
| | - Zarif Gul
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
2
|
Tan Q, Liu G, Zhao C, Gao M, Zhang X, Chen G, Li L, Huang X, Zhang Y, Lv J, Xu D. Layered Double Hydroxide@Metal-Organic Framework Hybrids for Extraction of Indole-3-Carbinol From Cruciferous Vegetables. Front Nutr 2022; 9:841257. [PMID: 35656156 PMCID: PMC9152278 DOI: 10.3389/fnut.2022.841257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cruciferous vegetables are rich in glucosinolates, which can be metabolized to produce the antitumor compound indole-3-carbinol (I3C). The conventional solvent extraction method for I3C is inefficient. To improve the extraction efficiency of I3C from cruciferous vegetables, we prepared a metal-organic framework (MOF) material (Fe3O4@Zn-Al-LDH@B-D-MIL-100). First, Fe3O4 nanoparticles were introduced to layered double hydroxides by in situ polymerization. Then, the MOF material was grown on the surface of the layered double hydroxide by co-precipitation and the layer-by-layer self-assembly method. This gave Fe3O4@Zn-Al-LDH@B-D-MIL-100, which was characterized using a variety of techniques. The results showed that Fe3O4@Zn-Al-LDH@B-D-MIL-100 had a double-layer porous structure, excellent superparamagnetism (11.54955 emu/g), a large specific surface area (174.04 m2/g), and a pore volume (0.26 cm3/g). The extraction conditions for I3C were optimized. Non-linear fitting of the static adsorption model showed that the adsorption was mainly monolayer. Fe3O4@Zn-Al-LDH@B-D-MIL-100 had fast adsorption kinetics and could extract 95% of I3C in 45 min. It is superior to the traditional solvent extraction method because of its high enrichment efficiency in a short time and environmental friendliness. The successful preparation of the new nanomaterial will provide a new reference for the enrichment and extraction of the I3C industry.
Collapse
Affiliation(s)
- Qiyue Tan
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Zhao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuan Zhang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Muslim M, Ali A, Kamaal S, Ahmad M, Jane Alam M, Rahman QI, Shahid M. Efficient adsorption and facile photocatalytic degradation of organic dyes over H-bonded proton-transfer complex: An experimental and theoretical approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
5
|
Garg U, Azim Y, Alam M. In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt. RSC Adv 2021; 11:21463-21474. [PMID: 35478783 PMCID: PMC9034213 DOI: 10.1039/d1ra01714d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Salts and cocrystals are the two important solid forms when a carboxylic acid crystallizes with an aminopyrimidine base such that the extent of proton transfer distinguishes between them. The ΔpKa value (pKa(base) − pKa(acid)) predicts whether the proton transfer will occur or not. However, the ΔpKa range, 0 < ΔpKa < 3, is elusive where the formation of cocrystal or salt cannot be predicted. The current study has been done to obtain a generalization in this elusive range with the Cambridge Structural Database (CSD). Based on the generalization, a novel salt (FTCA)−(2-AP)+ of furantetracarboxylic acid (FTCA) with 2-aminopyrimidine (2-AP) is obtained. The structural confirmation was done by single-crystal X-ray diffraction (SCXRD). Density functional theory (DFT) calculations were performed at the IEF-PCM-B3LYP-D3/6-311G(d,p) level to optimize the geometrical coordinates of salt for frontier molecular orbitals (FMOs) and molecular electrostatic potential (MESP). The geometrical parameters of most of the atoms of the optimized salt structure were comparable with SCXRD data. Additionally, results of other computational methods such as ab initio (Hartree–Fock; HF and second-order-Møller–Plesset perturbation; MP2) and semi-empirical were also compared with experimental results of the salt. Quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and natural bond orbital (NBO) analyses were done to calculate the strength and nature of non-covalent interactions present in the salt. Furthermore, Hirshfeld surface analysis, interaction energy calculations, and total energy frameworks were performed for qualitative and quantitative estimations of strong and weak intermolecular interactions. Generalization in the elusive ΔpKa range, experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt.![]()
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Mahboob Alam
- Division of Chemistry & Biotechnology, Dongguk University 123 Dongdae-ro Gyeongju Republic of Korea
| |
Collapse
|
6
|
Singh G, Satija P, Singh A, Pawan, Mohit, Kaur JD, Devi A, Saini A, Singh J. Bis-triazole with indole pendant Organosilicon framework: Probe for recognition of Pb2+ ions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Budziak-Wieczorek I, Maciołek U. Synthesis and Characterization of a (-)-Epicatechin and Barbituric Acid Cocrystal: Single-Crystal X-ray Diffraction and Vibrational Spectroscopic Studies. ACS OMEGA 2021; 6:8199-8209. [PMID: 33817479 PMCID: PMC8014927 DOI: 10.1021/acsomega.0c06239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 05/27/2023]
Abstract
The paper presents the contribution of the cocrystallization method in the physicochemical modification of catechins that exhibit low oral bioavailability. This was done to obtain cocrystals for two naturally occurring polyphenolic diastereoisomers (+)-catechin and (-)-epicatechin with commonly used coformers. Due to distinct crystallization behavior, only the (-)-epicatechin cocrystal with barbituric acid in a 1:1 stoichiometry was obtained. The cocrystal of (-)-epicatechin (EC) with barbituric acid (BTA) was prepared by the slow solvent-evaporation technique. The structure and intermolecular interactions were determined by X-ray crystallographic techniques. The analysis of packing and interactions in the crystal lattice revealed that molecules in the target cocrystal were packed into tapes, formed by the O-H···O type contacts between the (-)-epicatechin and coformer molecules. The EC molecules interact with the carboxyl group in the BTA coformer mainly by -OH groups from the benzene ring A. The cocrystalline phase constituents were also investigated in terms of Hirshfeld surfaces. The application of Raman spectroscopy confirmed the involvement of the C=O group in the formation of hydrogen bonds between the (-)-epicatechin and barbituric acid molecules. Additionally, the solubility studies of pure EC and the EC-BTA cocrystal exhibited minor enhancement of EC solubility in the buffer solution, and pH measurements confirmed a stable level of solubility for EC and its cocrystal.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- Department
of Chemistry, University of Life Sciences
in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Urszula Maciołek
- Analytical
Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Skłodowskiej
3, 20-031 Lublin, Poland
| |
Collapse
|
8
|
Tariq S, Khalid M, Raza AR, Rubab SL, Morais SFDA, Khan MU, Tahir MN, Braga AAC. Experimental and computational investigations of new indole derivatives: A combined spectroscopic, SC-XRD, DFT/TD-DFT and QTAIM analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127803] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Garg U, Azim Y, Kar A, Pradeep CP. Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons. CrystEngComm 2020. [DOI: 10.1039/d0ce00106f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Revisit of acid–aminopyrimidine synthons to explore the robustness in presence of linear hetrotetramer and heterotrimer synthon.
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh
- India
| | - Yasser Azim
- Department of Applied Chemistry
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh
- India
| | - Aranya Kar
- School of Basic Sciences
- Indian Institute of Technology Mandi
- India
| | | |
Collapse
|
10
|
Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-Ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules 2019; 24:molecules24234245. [PMID: 31766540 PMCID: PMC6930654 DOI: 10.3390/molecules24234245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/21/2022] Open
Abstract
Four novel xanthohumol (XN) cocrystals with pharmaceutically acceptable coformers, such as nicotinamide (NIC), glutarimide (GA), acetamide (AC), and caffeine (CF) in the 1:1 stoichiometry were obtained by the slow evaporation solution growth technique. The structure of the cocrystals was determined by single crystal X-ray diffraction. The analysis of packing and interactions in the crystal lattice revealed that molecules in the target cocrystals were packed into almost flat layers, formed by the O–H⋅⋅⋅O, O–H⋅⋅⋅N, and N–H⋅⋅⋅O-type contacts between the xanthohumol and coformer molecules. The results provided details about synthons responsible for crystal net stabilization and all hydrogen bonds observed in the crystal lattice. The main synthon was formed via the hydrogen bond between the hydroxyl group in the B ring of XN and coformers. The three-dimensional crystal lattice was stabilized by the hydrogen XN−XN interactions whereas the π–π stacking interactions played an additional role in layer binding, with the exception of low quality cocrystals formed with caffeine. Application of FTIR and Raman spectroscopy confirmed that the crystalline phase of obtained cocrystals was not a simple combination of individual components and completely different crystal phases resulted from the effect of intermolecular interactions. The multivariate analysis showed the changes in the spectra, and this technique can be applied in a combination with vibrational spectroscopy for fast screening of new crystal phases. Additionally, the solubility studies of pure XN and its cocrystals exhibited a 2.6-fold enhancement in XN solubility in aqueous solution for XN–AC and, to a lesser extent, for other cocrystals.
Collapse
|
11
|
Das D, Biradha K. Cocrystals and Salts of 3,5-Bis(pyridinylmethylene)piperidin-4-one with Aromatic Poly-Carboxylates and Resorcinols: Influence of Stacking Interactions on Solid-State Luminescence Properties. Aust J Chem 2019. [DOI: 10.1071/ch19062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two bis-pyridyl-substituted α,β-unsaturated ketones were shown to form complexes with carboxylic acids and resorcinol derivatives. The neutral acid–acid homosynthon was observed in only one complex out of the five acid-bis-pyridyl containing complexes studied here, while the –COO−⋯HOOC– synthon was found to be dominant as it was observed in four complexes. The carboxylates self-assembled to form discrete dimeric, anionic, 1D chains and also exhibited mixed ionic hydrogen bonds. On the other hand, resorcinol derivatives displayed O–H⋯N hydrogen bonding to form tetrameric aggregates of bis-pyridyl ketone molecules and respective co-formers, while 3,5-dihydroxy benzoic acid (DHBA) molecules formed 1D chains by clipping two molecules of ketones with three DHBA molecules. Such clipping by the resorcinol derivatives promoted continuous π–π stacking interactions. Consequently, these materials emitted at higher wavelengths compared with the parent bis-pyridyl-substituted α,β-unsaturated ketones.
Collapse
|