1
|
de Souza Carolino A, Freitas XMS, Macalia CMA, Soares JC, Soares AC, da Costa Pinto C, Barbosa ARC, de Araújo Bezerra J, Campelo PH, da Silva Paula MM, Lalwani PJ, Inada NM, Țãlu Ș, Malheiro A, Sanches EA. Virus adsorbent systems based on Amazon holocellulose and nanomaterials. Microsc Res Tech 2024; 87:1933-1954. [PMID: 38563156 DOI: 10.1002/jemt.24566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The environment preservation has been an important motivation to find alternative, functional, and biodegradable materials to replace polluting petrochemicals. The production of nonbiodegradable face masks increased the concentration of microplastics in the environment, highlighting the need for sustainable alternatives, such as the use of local by-products to create efficient and eco-friendly filtering materials. Furthermore, the use of smart materials can reduce the risk of contagion and virus transmission, especially in the face of possible mutations. The development of novel materials is necessary to ensure less risk of contagion and virus transmission, as well as to preserve the environment. Taking these factors into account, 16 systems were developed with different combinations of precursor materials (holocellulose, polyaniline [ES-PANI], graphene oxide [GO], silver nanoparticles [AgNPs], and activated carbon [AC]). Adsorption tests of the spike protein showed that the systems containing GO and AC were the most efficient in the adsorption process. Similarly, plate tests conducted using the VSV-IN strain cultured in HepG2 cells showed that the system containing all phases showed the greatest reduction in viral titer method. In agreement, the biocompatibility tests showed that the compounds extracted from the systems showed low cytotoxicity or no significant cytotoxic effect in human fibroblasts. As a result, the adsorption tests of the spike protein, viral titration, and biocompatibility tests showed that systems labeled as I and J were the most efficient. In this context, the present research has significantly contributed to the technological development of antiviral systems, with improved properties and increased adsorption efficiency, reducing the viral titer and contributing efficiently to public health. In this way, these alternative materials could be employed in sensors and devices for filtering and sanitization, thus assisting in mitigating the transmission of viruses and bacteria. RESEARCH HIGHLIGHTS: Sixteen virus adsorbent systems were developed with different combinations of precursor materials (holocellulose, polyaniline (ES-PANI), graphene oxide (GO), silver nanoparticles (AgNPs), and activated carbon (AC)). The system that included all of the nanocomposites holocellulose, PANI, GO, AgNPs, and AC showed the greatest reduction in viral titration. The biocompatibility tests revealed that all systems caused only mild or moderate cytotoxicity toward human fibroblasts.
Collapse
Affiliation(s)
- Adriano de Souza Carolino
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Aguyda Rayany Cavalcante Barbosa
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, AM, Brazil
| | | | | | - Pritesh Jaychand Lalwani
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Ștefan Țãlu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Malheiro
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Laboratory of Genomics (LABGEN), Hospital Foundation of Hematology and Hemotherapy of Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
2
|
Head-to-Tail and Head-to-Head Molecular Chains of Poly(p-Anisidine): Combined Experimental and Theoretical Evaluation. Molecules 2022; 27:molecules27196326. [PMID: 36234863 PMCID: PMC9571860 DOI: 10.3390/molecules27196326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Poly(p-anisidine) (PPA) is a polyaniline derivative presenting a methoxy (–OCH3) group at the para position of the phenyl ring. Considering the important role of conjugated polymers in novel technological applications, a systematic, combined experimental and theoretical investigation was performed to obtain more insight into the crystallization process of PPA. Conventional oxidative polymerization of p-anisidine monomer was based on a central composite rotational design (CCRD). The effects of the concentration of the monomer, ammonium persulfate (APS), and HCl on the percentage of crystallinity were considered. Several experimental techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), multifractal analysis, Nuclear Magnetic Resonance (13C NMR), Fourier-transform Infrared spectroscopy (FTIR), and complex impedance spectroscopy analysis, in addition to Density Functional Theory (DFT), were employed to perform a systematic investigation of PPA. The experimental treatments resulted in different crystal structures with a percentage of crystallinity ranging from (29.2 ± 0.6)% (PPA1HT) to (55.1 ± 0.2)% (PPA16HT-HH). A broad halo in the PPA16HT-HH pattern from 2θ = 10.0–30.0° suggested a reduced crystallinity. Needle and globular-particle morphologies were observed in both samples; the needle morphology might have been related to the crystalline contribution. A multifractal analysis showed that the PPA surface became more complex when the crystallinity was reduced. The proposed molecular structures of PPA were supported by the high-resolution 13C NMR results, allowing us to access the percentage of head-to-tail (HT) and head-to-head (HH) molecular structures. When comparing the calculated and experimental FTIR spectra, the most pronounced changes were observed in ν(C–H), ν(N–H), ν(C–O), and ν(C–N–C) due to the influence of counterions on the polymer backbone as well as the different mechanisms of polymerization. Finally, a significant difference in the electrical conductivity was observed in the range of 1.00 × 10−9 S.cm−1 and 3.90 × 10−14 S.cm−1, respectively, for PPA1HT and PPA16HT-HH.
Collapse
|
3
|
da Silva LS, Biondo MM, Feitosa BDA, Rocha ALF, Pinto CDC, Lima SX, Nogueira CDL, de Souza SM, Ruiz YL, Campelo PH, Sanches EA. Semiconducting nanocomposite based on the incorporation of polyaniline on the cellulose extracted from Bambusa vulgaris: structural, thermal and electrical properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Li P, Zhang D, Xu Y, Ni C, Shi G, Sang X, Cong H. Hierarchical porous polyaniline supercapacitor electrode from polyaniline/silica self- aggregates. POLYM INT 2018. [DOI: 10.1002/pi.5692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Peipei Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi China
- School of Materials Engineering; Xuzhou College of Industrial Technology; Xuzhou China
| | - Dazhi Zhang
- School of Materials Engineering; Xuzhou College of Industrial Technology; Xuzhou China
| | - Yunhui Xu
- School of Materials Engineering; Xuzhou College of Industrial Technology; Xuzhou China
| | - Caihua Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Houluo Cong
- School of Materials Engineering; Xuzhou College of Industrial Technology; Xuzhou China
| |
Collapse
|