1
|
Yıldırım A, Atmaca U, Şahin E, Taslimi P, Taskin-Tok T, Çelik M, Gülçin İ. The synthesis, carbonic anhydrase and acetylcholinesterase inhibition effects of sulfonyl chloride moiety containing oxazolidinones using an intramolecular aza-Michael addition. J Biomol Struct Dyn 2025; 43:1052-1067. [PMID: 38100567 DOI: 10.1080/07391102.2023.2291163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023]
Abstract
Oxazolidinones are used as various potent antibiotics, in organisms it acts as a protein synthesis inhibitor, focusing on an initial stage that encompasses the tRNA binding process. Novel intramolecular aza-Michael reactions devoid of metal catalysts have been introduced in an oxazolidone synthesis pathway, different from α,β-unsaturated ketones. Oxazolidinone derivatives were tested against acetylcholinesterase (AChE), carbonic anhydrase I and II (hCA I and hCA II) enzymes. All the synthesized compounds had potent inhibition effects with Ki values in the range of 13.57 ± 0.98 - 53.60 ± 6.81 µM against hCA I and 9.96 ± 1.02 - 46.35 ± 3.83 µM against hCA II in comparison to the acetazolamide (AZA) (Ki = 50.46 ± 6.17 µM for hCA I) and for hCA II (Ki = 41.31 ± 5.05 µM). Also, most of the compounds demonstrated potent inhibition ability towards AChE enzyme with Ki values 78.67-231.75 nM and compared to tacrine (TAC) as standard clinical inhibitor (Ki = 142.48 nM). Furthermore, ADMET analysis and molecular docking were calculated using the AChE, hCA I and hCA II enzyme proteins to correlate the data with the experimental data. In this work, recent applications of a stereoselective aza-Michael reaction as an efficient tool for of nitrogen-containing heterocyclic scaffolds and their useful to pharmacology analogs are reviewed and summarized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alper Yıldırım
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
3
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Karaca EÖ, Bingöl Z, Gürbüz N, Özdemir İ, Gülçin İ. Vinyl functionalized 5,6-dimethylbenzimidazolium salts: Synthesis and biological activities. J Biochem Mol Toxicol 2023; 37:e23255. [PMID: 36424355 DOI: 10.1002/jbt.23255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1 H-NMR, 13 C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6-1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7-926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27-760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3-77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5-61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a-g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.
Collapse
Affiliation(s)
- Emine Ö Karaca
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - Zeynebe Bingöl
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Gaziosmanpasa University, Tokat, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Hamide M, Gök Y, Demir Y, Sevinçek R, Taskin-Tok T, Tezcan B, Aktaş A, Gülçin İ, Aygün M, Güzel B. Benzimidazolium Salts Containing Trifluoromethoxybenzyl: Synthesis, Characterization, Crystal Structure, Molecular Docking Studies and Enzymes Inhibitory Properties. Chem Biodivers 2022; 19:e202200257. [PMID: 36260838 DOI: 10.1002/cbdv.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/19/2022] [Indexed: 01/07/2023]
Abstract
The method for producing 4-trifluoromethoxybenzyl substituted benzimidazolium salts is described in this article. The method is based on the reaction of 4-trifluoromethoxybenzyl substituent alkylating agent with 1-alkylbenzimidazole. This method yielded 1-(4-trifluoromethoxybenzyl)-3-alkylbenzimidazolium bromide salts. These benzimidazolium salts were characterized by using 1 H-NMR, 13 C-NMR, FT-IR spectroscopy, and elemental analysis techniques. The crystal structure of 1f was enlightened by single crystal X-ray diffraction studies. Also, the enzyme inhibition effects of the synthesised compounds were investigated. They demonstrated highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 7.24±0.99 to 39.12±5.66 nM, 5.57±0.96 to 43.07±11.76 nM, and 4.38±0.43 to 18.68±3.60 nM for AChE, hCA I, and hCA II, respectively). In molecular docking study, the interactions of active compounds showing activity against AChE and hCAs enzymes were examined. The most active compound 1f has -10.90 kcal/mol binding energy value against AChE enzyme, and the potential structure compound 1e, which has activity against hCA I and hCA II enzymes, was -7.51 and -8.93 kcal/mol, respectively.
Collapse
Affiliation(s)
- Mahmut Hamide
- Department of Chemistry, Faculty of Arts and Science, Cukurova University, 01330-, Adana, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Ardahan University, 75700-, Ardahan, Türkiye
| | - Resul Sevinçek
- Dokuz Eylül University, Faculty of Science, Department of Physics, 35160-, Buca, İzmir, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye
| | - Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science, Cukurova University, 01330-, Adana, Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, 44280-, Malatya, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240-, Erzurum, Türkiye
| | - Muhittin Aygün
- Dokuz Eylül University, Faculty of Science, Department of Physics, 35160-, Buca, İzmir, Türkiye
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science, Cukurova University, 01330-, Adana, Türkiye
| |
Collapse
|
6
|
Hamide M, Gök Y, Demir Y, Yakalı G, Tok TT, Aktaş A, Sevinçek R, Güzel B, Gülçin İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Naghiyev F, Mamedov I, Askerov R, Taslimi P, Poustforoosh A. Synthesis and Biological Activity of Functionally Substituted Pyrimidine and Pyran Derivatives on the Basis of Isatylidene Malononitriles. ChemistrySelect 2022. [DOI: 10.1002/slct.202202006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farid Naghiyev
- Faculty of Chemistry Baku State University Z. Khalilov str. 23, Az 1148 Baku Azerbaijan
| | - Ibrahim Mamedov
- Faculty of Chemistry Baku State University Z. Khalilov str. 23, Az 1148 Baku Azerbaijan
| | - Rizvan Askerov
- Faculty of Chemistry Baku State University Z. Khalilov str. 23, Az 1148 Baku Azerbaijan
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 Bartin Türkiye
| | - Alireza Poustforoosh
- Department of Chemical Engineering Faculty of Engineering Shahid Bahonar University of Kerman,Kerman Iran
| |
Collapse
|
8
|
Behçet A, Taslimi P, Gök Y, Aktaş A, Taskin‐Tok T, Gülçin İ. New PEPPSI‐Pd‐NHC complexes bearing 4‐hydroxyphenylethyl group: Synthesis, characterization, molecular docking, and bioactivity properties. Arch Pharm (Weinheim) 2022; 355:e2200276. [DOI: 10.1002/ardp.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service Inonu University Malatya Türkiye
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Türkiye
| |
Collapse
|
9
|
Bora RE, Bilgicli HG, Üç EM, Alagöz MA, Zengin M, Gulcin İ. Synthesis, characterization, Evaluation of Metabolic Enzyme Inhibitors and in silico Studies of Thymol Based 2-Amino Thiol and Sulfonic Acid Compounds. Chem Biol Interact 2022; 366:110134. [DOI: 10.1016/j.cbi.2022.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
|
10
|
Erdogan MK, Gundogdu R, Yapar Y, Gecibesler IH, Kirici M, Behcet L, Tuzun B, Taslimi P. The Evaluation of Anticancer, Antioxidant, Antidiabetic and Anticholinergic Potentials of Endemic
Rhabdosciadium microcalycinum
Supported by Molecular Docking Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202200400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ramazan Gundogdu
- Department of Pharmacy Services Vocational School of Health Services Bingol University 12000- Bingol Turkey
| | - Yakup Yapar
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ibrahim Halil Gecibesler
- Department of Occupational Health and Safety Faculty of Health Science Bingol University 12000- Bingol Turkey
| | - Mahinur Kirici
- Department of Chemistry Faculty of Arts and Sciences Bingol University 12000- Bingol Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University Sivas Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 - Bartin Turkey
| |
Collapse
|
11
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
12
|
Gulcin I, Bingöl Z, Taslimi P, Gören AC, Alwasel SH, Tel AZ. Polyphenol Contents, Potential Antioxidant, Anticholinergic and Antidiabetic Properties of Mountain Mint (Cyclotrichium leucotrichum). Chem Biodivers 2022; 19:e202100775. [PMID: 35015378 DOI: 10.1002/cbdv.202100775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
In the present work, antioxidant and antidiabetic potentials of mountain mint [Cyclotrichium leu-cotrichum (Stapf ex Rech. Fil.) Leblebici] was the first time appraised. In this sense, methanol (MECL) and water (WECL) extracts were obtained from aerial parts of mountain mint (Cyclotrichium leucotrichum) and studied for their antioxidant ability by several bioanalytical assays. Also, their inhibition profiles were realized toward several metabolic enzymes connected to some diseases, including butyrylcholinesterase (BChE), α-glycosidase, acetylcholinesterase (AChE), and α-amylase enzymes. Additionally, their phenolic contents were determined by putative chromatographic method of LC-MS/MS. Consequently, nineteen phenolic molecules were identified in MECL and fifteen phenolic molecules were found in WECL. Also, antioxidant effects of both extracts were studied using by the methods of 1,1-diphenyl-2-picryl-hydrazyl (DPPH·), 2,2´-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and (ABTS•+)N,N-dimethyl-p-phenylenediamine (DMPD•+) scavenging activities, ferric (Fe3+) and cupric (Cu2+) ions and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) reducing capacities. MECL and WECL were found as powerful DPPH· (IC50: 23.74 and 28.85 μg/mL), ABTS•+ (IC50: 12.53 and 14.05 μg/mL) and DMPD•+ scavenging effects (IC50: 43.52 and 54.80 μg/mL). Also, both extracts demonstrated the effective inhibition effects on AChE (IC50: 69.31 and 115.51 μg/mL), BChE (IC50: 57.75 and 86.62 μg/mL), α-glycosidase (IC50: 36.47 and 62.94 μg/mL) and α-amylase (IC50: 1.01 and 3.43 μg/mL). This study will be useful for future studies to determine the antioxidant properties and enzyme inhibition profile of food, medical and industrially important plants.
Collapse
Affiliation(s)
- Ilhami Gulcin
- Ataturk University, Chemistry, Faculty of Science, 25240, Erzurum, TURKEY
| | - Zeynebe Bingöl
- Ataturk University: Ataturk Universitesi, Chemistry, Faculty of Sciences, Erzurum, TURKEY
| | - Parham Taslimi
- Bartın Üniversitesi Fen Fakültesi: Bartin Universitesi Fen Fakultesi, Biotechnology, Faullty of Sciences, Bartin, TURKEY
| | - Ahmet C Gören
- Gebze Teknik Universitesi, Chemistry, Faculty of Science, 41400, Kocaeli, TURKEY
| | - Saleh H Alwasel
- King Saud University, Zoology, Colleague of Science, Riyadh, SAUDI ARABIA
| | - Ahmet Zafer Tel
- Iğdır Üniversitesi: Igdir Universitesi, Agricultural Biotechnology, Faculty of Agriculture, Iğdır, TURKEY
| |
Collapse
|
13
|
Makarian M, Gonzalez M, Salvador SM, Lorzadeh S, Hudson PK, Pecic S. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. J Mol Struct 2022; 1247. [PMID: 35221376 DOI: 10.1016/j.molstruc.2021.131425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In an effort to develop new therapeutic agents to treat Alzheimer's disease, a series of donepezil-based analogs were designed, synthesized using an environmentally friendly route, and biologically evaluated for their inhibitory activity against electric eel acetylcholinesterase (AChE) enzyme. In vitro studies revealed that the phenyl moiety of donepezil can be successfully replaced with a pyridine ring leading to equally potent inhibitors of electric eel AChE. Further kinetic evaluations of the most potent inhibitor showed a dual-binding (mixed inhibition) mode, similar to donepezil. Molecular modeling studies suggest that several additional residues could be involved in the binding of this inhibitor in the human AChE enzyme active site compared to donepezil.
Collapse
Affiliation(s)
- Makar Makarian
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Michael Gonzalez
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Stephanie M Salvador
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paula K Hudson
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| |
Collapse
|
14
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Özdemir M, Taslimi P, Zorlu Y, Yalçın B, Şahin O. Synthesis, biological and theoretical properties of crystal zinc complex with thiosemicarbazone of glyoxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Yavari MA, Taslimi P, Bayrak C, Taskin‐Tok T, Menzek A. 1,
3‐dipolar
cycloaddition reactions of the compound obtaining from
cyclopentadiene‐PTAD
and biological activities of adducts formed selectively. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mirali Akbar Yavari
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
- Department of Chemistry, Faculty of Science Istinye University Istanbul Turkey
| | - Cetin Bayrak
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
- Dogubayazit Ahmed‐i Hani Vocational School Agri Ibrahim Cecen University Agri Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
16
|
Çağlılar T, Behçet A, Celepci DB, Aktaş A, Gök Y, Aygün M. Benzimidazole-functionalized PEPPSI type Pd(II)NHC complexes bearing nitrophenylethyl and hidroxyphenylethyl group: Synthesis, characterization, crystal structure and it's catalytic activity on direct arylation reaction. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Yavari MA, Adiloglu Y, Saglamtas R, Tutar A, Gulcin I, Menzek A. Synthesis and some enzyme inhibition effects of isoxazoline and pyrazoline derivatives including benzonorbornene unit. J Biochem Mol Toxicol 2021; 36:e22952. [PMID: 34783117 DOI: 10.1002/jbt.22952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Four new and four known isoxazoline derivatives were synthesized from the reactions of benzonorbornadiene with nitrile oxides formed from the corresponding benzaldehydes. Three new and one known pyrazoline derivatives were also synthesized from the reactions of the benzonorbornadiene with nitrile imines formed from the corresponding compounds. The synthesized nitrogen-based novel heterocyclic compounds were evaluated against the human carbonic anhydrase isoenzymes I and II (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. The synthesized nitrogen-based novel heterocyclic compounds showed IC50 values in the range of 2.69-7.01 against hCA I, 2.40-4.59 against hCA II, 0.81-1.32 µM against AChE, and 20.83-1.70 µM against BChE enzymes. On the contrary, nitrogen-based novel heterocyclic compounds demonstrated Ki values between 2.93 ± 0.59-8.61 ± 1.39 against hCA I, 2.05 ± 0.62-4.97 ± 0.95 against hCA II, 0.34 ± 0.02-0.92 ± 0.17 nM against AChE, and 0.50 ± 0.04-1.20 ± 0.16 µM against BChE enzymes. The synthesized nitrogen-based novel heterocyclic compounds exhibited effective inhibition profiles against both indicated metabolic enzymes. These results may contribute to the development of new drugs particularly to treat some disorders, which are widespread in the world including glaucoma and Alzheimer's diseases.
Collapse
Affiliation(s)
- Mirali A Yavari
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yadigar Adiloglu
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ruya Saglamtas
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ahmet Tutar
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Akıncıoğlu A, Göksu S, Naderi A, Akıncıoğlu H, Kılınç N, Gülçin İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput Biol Chem 2021; 94:107565. [PMID: 34474201 DOI: 10.1016/j.compbiolchem.2021.107565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel urea, sulfamide and N,N-dipropargyl substituted benzylamines were synthesized from dihydrochalcones. The synthesized compounds were evaluated for their cholinesterases and carbonic anhydrase inhibitory actions. The known dihydrochalcones were converted into four new benzylamines via reductive amination. N,N-Dipropargylamines, ureas and sulfamides were synthesized following the reactions of benzylamines with propargyl bromide, N,N-dimethyl sulfamoyl chloride and N,N-dimethyl carbamoyl chloride. The novel substituted benzylamines derived from dihydrochalcones were evaluated against some enzymes such as human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The novel substituted benzylamines derived from dihydrochalcones exhibited Ki values in the range of 0.121-1.007 nM on hCA I, and 0.077-0.487 nM on hCA II closely related to several pathological processes. On the other hand, Ki values were found in the range of 0.112-0.558 nM on AChE, 0.061-0.388 nM on BChE. As a result, novel substituted benzylamines derived from dihydrochalcones showed potent inhibitory profiles against indicated metabolic enzymes. In addition, Induced-Fit Docking (IFD) simulations and ADME prediction studies have also been carried out to elucidate the inhibition mechanisms and drug-likeness of the synthesized compounds. Therefore, these results can make significant contributions to the treatment of some global diseases, especially Alzheimer's diseases and glaucoma, and the development of new drugs.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Agri Ibrahim Cecen University, Central Researching Laboratory, 04100 Agri, Turkey
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey.
| | - Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Hülya Akıncıoğlu
- Agri Ibrahim Cecen University, Faculty of Arts and Science, Agri, Turkey
| | - Namık Kılınç
- Igdir University, Vocational School of Health Services, Department of Medical Services and Techniques, Igdir, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| |
Collapse
|
19
|
Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Celepci DB, Yiğit B, Yiğit M, Özdemir İ, Aygün M. Amine-functionalized benzimidazolium salts: Synthesis, structural characterization, hirshfeld surface analysis and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Fatty acid composition, enzyme inhibitory effect, antioxidant and anticancer activity of extract from Saponaria prostrata WILLD. subsp. anatolica HEDGE. Bioorg Chem 2021; 113:105032. [PMID: 34089947 DOI: 10.1016/j.bioorg.2021.105032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
This study attempts to evaluate the antioxidant, enzyme inhibitory, and anticancer properties as well as fatty acid compositions of endemic Saponaria prostrata WILLD. subsp. anatolica HEDGE. The gas chromatography-mass spectrometry (GC-MS) was used to determine the fatty acid content of methanol: dichloromethane extract from S. prostrata subsp. anatolica (SPA). Enzymatic activity was measured against acetylcholinesterase, butyrylcholinesterase and α-glucosidase. DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and Ferric reducing antioxidant power assay (FRAP) were conducted to antioxidant properties. The anticancer effect of SPA on human MCF-7 breast cancer and human HCT116 colorectal cancer cell line was evaluated by WST-1 cell viability assay, colony formation assay and wound healing assay. In addition, human VEGF Elisa method was used to determine the anti-angiogenic effect, and the quantitative real-time PCR (qRT-PCR) method on p53, Bax and Bcl-2 mRNA levels were used to evaluate apoptosis. While high amounts of palmitic acid (40.8%), linoleic acid (17.75%) and α-linolenic acid (16.84%) were detected in the SPA, the total amount of unsaturated fatty acid (51.34%) was higher than the total amount of saturated fatty acid (48.66%). SPA displayed the most promising acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and α-glycosidase (AG) inhibitory activities (AChE: IC50: 18.03 µg/mL, BuChE: IC50: 44.24 µg/mL and AG: IC50: 210.85 µg/mL). The half maximum inhibitory concentration (IC50) of SPA in MCF-7 and HCT116 cells was determined as 259.79 µg/mL and 97.24 µg/mL, respectively. In addition, it was determined that SPA suppresses colony formation and wound closure, and suppresses angiogenesis as well as triggering apoptosis at a significant level. It is true that endemic S. prostrata subsp. anatolica is a potential source of functional food ingredients, but more analytical and in vivo experiments are needed to explore further secondary metabolite diversity and pharmacological properties.
Collapse
|
22
|
Üstün E, Çelebi MS, Ayvaz MÇ, Şahin N. PEPPSI complexes as potential prodrugs: enzyme inhibition, antioxidant activity, electrochemical characterization, molecular docking analysis. Z NATURFORSCH C 2021; 76:219-227. [PMID: 33792212 DOI: 10.1515/znc-2020-0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
In this study, enzyme inhibition and antioxidant activity analyzes of previously characterized pyridine-enhanced precatalyst preparation stabilization and initiation (PEPPSI)-type Palladium(II) complexes with benzimidazole-type ligands {dichloro[L]pyridine palladium(II), L1: 1-(2-methyl-2-propenyl)-3-[benzylbenzimidazole]-2-ylidene, L2: 1-(2-methyl-2-propenyl)-3-[4-chloro benzylbenzimidazole]-2-ylidene, L3: 1-(2-methyl-2-propenyl)-3-[3-methylbenzylbenzimidazole]-2-ylidene, L4: 1-(2-methyl-2-propenyl)-3-[3,4,5-thrimethoxybenzylbenzimidazole]-2-ylidene, L5: 1-(2-methyl-2-propenyl)-3-[3-naphthylbenzylbenzimidazole]-2-ylidene, L6: 1-(2-methyl-2-propenyl)-3-[anthracen-9-ylmethylbenzimidazole]-2-ylidene} were performed and evaluated as potential drugs for neurodegenerative disorders such as Alzheimer disease and Parkinson disease. Inhibition of tyrosinase enzyme of N-heterocyclic carbenes (NHC) complexes was determined for the first time in literature. Chelating activities of the complexes were determined and compared with EDTA. Electrochemical characterization was performed using cyclic voltammetry method. Moreover, global reactivity descriptors and electronic transitions were evaluated by DFT/TDDFT methods and molecular docking interactions with human acetylcholine esterase, human butyrylcholine esterase and oxidoreductase were studied.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Mutlu S Çelebi
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Melek Ç Ayvaz
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Ordu, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
23
|
Mirzazadeh R, Asgari MS, Barzegari E, Pedrood K, Mohammadi-Khanaposhtani M, Sherafati M, Larijani B, Rastegar H, Rahmani H, Mahdavi M, Taslimi P, Üç EM, Gulçin İ. New quinoxalin-1,3,4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies. Arch Pharm (Weinheim) 2021; 354:e2000471. [PMID: 33999440 DOI: 10.1002/ardp.202000471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
A new series of quinoxalin-1,3,4-oxadiazole (10a-l) derivatives was synthesized and evaluated against some metabolic enzymes including human carbonic anhydrase (hCA) isoenzymes I and II (carbonic anhydrases I and II), cholinesterase (acetylcholinesterase and butyrylcholinesterase), and α-glucosidase. Obtained data revealed that all the synthesized compounds were more potent as compared with the used standard inhibitors against studied target enzymes. Among the synthesized compounds, 4-fluoro derivative (10f) against hCA I, 4-chloro derivative (10i) against hCA II, 3-fluoro derivative (10e) against acetylcholinesterase and butyrylcholinesterase, and 3-bromo derivative (10k) against α-glucosidase were the most potent compounds with inhibitory activity around 1.8- to 7.37-fold better than standard inhibitors. Furthermore, docking studies of these compounds were performed at the active site of their target enzymes.
Collapse
Affiliation(s)
| | - Mohammad S Asgari
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Hojjat Rahmani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Eda M Üç
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
24
|
Daşgın S, Gök Y, Barut Celepci D, Taslimi P, İzmirli M, Aktaş A, Gülçin İ. Synthesis, characterization, crystal structure and bioactivity properties of the benzimidazole-functionalized PEPPSI type of Pd(II)NHC complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Tokalı FS, Taslimi P, Demircioğlu İH, Karaman M, Gültekin MS, Şendil K, Gülçin İ. Design, synthesis, molecular docking, and some metabolic enzyme inhibition properties of novel quinazolinone derivatives. Arch Pharm (Weinheim) 2021; 354:e2000455. [PMID: 33537994 DOI: 10.1002/ardp.202000455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 11/07/2022]
Abstract
3-Amino-2-ethylquinazolin-4(3H)-one (3) was synthesized in two steps from the reaction of amide (2), which was obtained from the treatment of methyl anthranilate (1) with propionyl chloride, with hydrazine. From the reaction of 3-amino-2-ethylquinazolin-4(3H)-one (3) with various aromatic aldehydes, novel benzylidenaminoquinazolin-4(3H)-one (3a-n) derivatives were synthesized. The structures of the novel molecules were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy (1 H-NMR and 13 C-NMR), and high-resolution mass spectroscopy. The novel compounds were tested against some metabolic enzymes, including α-glucosidase (α-Glu), acetylcholinesterase (AChE), and human carbonic anhydrases I and II (hCA I and II). The novel compounds showed Ki values in the range of 244-988 nM for hCA I, 194-900 nM for hCA II, 30-156 nM for AChE, and 215-625 nM for α-Glu. The binding affinities of the most active compounds were calculated as -7.636, -6.972, -10.080, and -8.486 kcal/mol for hCA I, hCA II, AChE, and α-Glu enzymes, respectively. The aromatic ring of the quinazoline moiety plays a critical role in the inhibition of the enzymes.
Collapse
Affiliation(s)
- Feyzi S Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | | | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kilis 7 Aralik University, Kilis, Turkey
| | - Mehmet S Gültekin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, Kars, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
26
|
Synthesis, characterization and bioactivities of dative donor ligand N-heterocyclic carbene (NHC) precursors and their Ag(I)NHC coordination compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Behçet A, Aktaş A, Gök Y, Kaya R, Taslimi P, Gülçin İ. Novel silver(I)
N
‐heterocyclic
carbene complexes bearing 2‐(4‐hydroxyphenyl)ethyl group: Synthesis, characterization, and enzyme inhibition properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
- Vocational School of Health Service Inonu University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
| | - Rüya Kaya
- Central Research and Application Laboratory Ağri İbrahim Çeçen University Agri Turkey
- Department of Chemistry, Faculty of Sciences Atatürk University Erzurum Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences Atatürk University Erzurum Turkey
| |
Collapse
|
28
|
Sepehri N, Mohammadi-Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Norizadehtazehkand M, Gulcin I. Novel quinazolin-sulfonamid derivatives: synthesis, characterization, biological evaluation, and molecular docking studies. J Biomol Struct Dyn 2020; 40:3359-3370. [PMID: 33222620 DOI: 10.1080/07391102.2020.1847193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the design of novel drugs, the formation of hybrid molecules via the combination of several pharmacophores can give rise to compounds with interesting biochemical profiles. A series of novel quinazolin-sulfonamid derivatives (9a-m) were synthesized, characterized and evaluated for their in vitro antidiabetic, anticholinergics, and antiepileptic activity. These synthesized novel quinazolin-sulfonamid derivatives (9a-m) were found to be effective inhibitor molecules for the α-glycosidase, human carbonic anhydrase I and II (hCA I and hCA II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzyme, with Ki values in the range of 100.62 ± 13.68-327.94 ± 58.21 nM for α-glycosidase, 1.03 ± 0.11-14.87 ± 2.63 nM for hCA I, 1.83 ± 0.24-15.86 ± 2.57 nM for hCA II, 30.12 ± 3.81-102.16 ± 13.87 nM for BChE, and 26.16 ± 3.63-88.52 ± 20.11 nM for AChE, respectively. In the last step, molecular docking calculations were made to compare biological activities of molecules against enzymes which are achethylcholinesterase, butyrylcholinesterase and α-glycosidase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mostafa Norizadehtazehkand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
30
|
Aksu K, Akincioglu H, Gulcin I, Kelebekli L. Concise syntheses and some biological activities of dl-2,5-di-O-methyl-chiro-inositol, dl-1,4-di-O-methyl-scyllo-inositol, and dl-1,6-dibromo-1,6-dideoxy-2,5-di-O-methyl-chiro-inositol. Arch Pharm (Weinheim) 2020; 354:e2000254. [PMID: 32997390 DOI: 10.1002/ardp.202000254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/11/2022]
Abstract
The regio- and stereospecific synthesis of O-methyl-chiro-inositols and O-methyl-scyllo-inositol was achieved, starting from p-benzoquinone. After preparing dimethoxy conduritol-B as a key compound, regiospecific bromination of the alkene moiety of dimethoxy conduritol-B and acid-catalyzed ring opening of dimethoxydiacetate conduritol-B epoxide with Ac2 O afforded the desired new chiro-inositol derivatives and scyllo-inositol derivative, respectively. Spectroscopic methods were employed for the characterization of all synthesized compounds. The novel inositols (11-17) had effective inhibition profiles against human carbonic anhydrase isoenzymes I and II (hCA I and II) and acetylcholinesterase (AChE). The novel inositols 11-17 were found to be effective inhibitors against AChE, hCA I, and hCA II enzymes. Ki values were calculated in the range of 87.59 ± 7.011 to 237.95 ± 17.75 μM for hCA I, 65.08 ± 12.39 to 538.98 ± 61.26 μM for hCA II, and 193.28 ± 43.13 to 765.08 ± 209.77 μM for AChE, respectively. Also, due to the inhibitory effects of the novel inositols 11-17 against the tested enzymes, these novel inositols are potential drug candidates to treat some diseases such as glaucoma, epilepsy, leukemia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Sciences and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey
| |
Collapse
|
31
|
Kalin R, Köksal Z, Bayrak S, Gerni S, Ozyürek IN, Usanmaz H, Karaman M, Atasever A, Özdemir H, Gülçin İ. Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk. J Biomol Struct Dyn 2020; 40:401-410. [PMID: 32856529 DOI: 10.1080/07391102.2020.1814416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotics are generally used for human and veterinary applications to preserve and to control microbial diseases. Milk has a biologically significant enzyme known as lactoperoxidase (LPO) that is a member of peroxidase family. In metabolism, LPO has ability to catalyze the transformation of thiocyanate (SCN-) to hypothiocyanite (OSCN-) that is an antibacterial agent and the reaction occurs with hydrogen peroxide. In this work, LPO inhibition effects of some antibiotics including cefazolin, oxytetracycline, flunixin meglumine, cefuroxime, tylosin, vancomycin, chloramphenicol and lincomycin were tested. Among the antibiotics cefazolin was indicated the strongest inhibitory efficacy. The half maximal inhibitory concentration (IC50) and the inhibition constant (Ki) values of cefazolin were found as 8.19 and 34.66 µM, respectively. It was shown competitive inhibition. 5-Methyl-1,3,4-thiadiazol-2-yl moiety activity plays a key role in the inhibition mechanism of cefazolin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramazan Kalin
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, İstanbul, Turkey
| | - Songül Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Işıl Nihan Ozyürek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hande Usanmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, Sinop, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey
| | - Ali Atasever
- Ispir Hamza Polat Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
32
|
Huseynova A, Kaya R, Taslimi P, Farzaliyev V, Mammadyarova X, Sujayev A, Tüzün B, Kocyigit UM, Alwasel S, Gulçin İ. Design, synthesis, characterization, biological evaluation, and molecular docking studies of novel 1,2-aminopropanthiols substituted derivatives as selective carbonic anhydrase, acetylcholinesterase and α-glycosidase enzymes inhibitors. J Biomol Struct Dyn 2020; 40:236-248. [DOI: 10.1080/07391102.2020.1811772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Afat Huseynova
- Laboratory of ‘Fine Organic Synthesis’ of Baku State University, Baku, Azerbaijan
| | - Ruya Kaya
- Agri Ibrahim Cecen University Central Research and Application Laboratory, Agri, Turkey
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Vagif Farzaliyev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Xadija Mammadyarova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Umit M. Kocyigit
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulçin
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
33
|
Bioactivity and molecular docking studies of some nickel complexes: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. Bioorg Chem 2020; 101:104066. [DOI: 10.1016/j.bioorg.2020.104066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 01/09/2023]
|
34
|
Burmaoglu S, Kazancioglu EA, Kaya R, Kazancioglu M, Karaman M, Algul O, Gulcin I. Synthesis of novel organohalogen chalcone derivatives and screening of their molecular docking study and some enzymes inhibition effects. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Karimov A, Orujova A, Taslimi P, Sadeghian N, Mammadov B, Karaman HS, Farzaliyev V, Sujayev A, Tas R, Alwasel S, Gulçin İ. Novel functionally substituted esters based on sodium diethyldithiocarbamate derivatives: Synthesis, characterization, biological activity and molecular docking studies. Bioorg Chem 2020; 99:103762. [PMID: 32224335 DOI: 10.1016/j.bioorg.2020.103762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023]
Abstract
Alkylation of sodium diethyldithiocarbamate with allyl-2-chloroacetate, allyl-3-chloropropionate, chloromethyl-2-(tetrahydrofuran-2-yl)acetate, and 4-(chloromethyl)-1,3-dioxolane in the aqueous medium synthesized functionally substituted esters of N, N-dietyleditiocarbamic acid (M1-M4). Most active compounds were docked into the catalytic active site of the enzyme. We identified that acetate moiety for inhibition of hCA I, hCA II, and α-glycosidase and dioxolane and thiocarbamic acid moieties for inhibition of AChE and BChE enzymes are very important. The hCA I isoform was inhibited by these novel functionally substituted esters based on sodium diethyldithiocarbamate derivatives (M1-M4) in low micromolar levels, the Ki of which differed between 48.03 ± 9.77 and 188.42 ± 46.08 µM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 57.33 ± 6.21 to 174.34 ± 40.72 µM. Also, these novel derivatives (M1-M4) effectively inhibited AChE, with Ki values in the range of 115.42 ± 12.44 to 243.22 ± 43.65 µM. For BChE Ki values were found in the range of 94.33 ± 9.14 to 189.45 ± 35.88 µM. For α-glycosidase the most effective Ki values of M4 and M3 were with Ki values of 32.86 ± 7.88 and 37.63 ± 4.08 µM, respectively.
Collapse
Affiliation(s)
- Alverdi Karimov
- Laboratory of Chemical Additions to Polymers and Polymer Gels, Institute of Polymer Materials, Azerbaijan National Academy of Sciences, 5004 Sumgait, Azerbaijan
| | - Arzu Orujova
- Laboratory of Chemical Additions to Polymers and Polymer Gels, Institute of Polymer Materials, Azerbaijan National Academy of Sciences, 5004 Sumgait, Azerbaijan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey.
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Bahtiyar Mammadov
- Laboratory of Chemical Additions to Polymers and Polymer Gels, Institute of Polymer Materials, Azerbaijan National Academy of Sciences, 5004 Sumgait, Azerbaijan
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Vagif Farzaliyev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Recep Tas
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
36
|
A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. CRYSTALS 2020. [DOI: 10.3390/cryst10030171] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a novel silver N-heterocyclic carbene (Ag-NHC) complex bearing hydroxyethyl substituent has been synthesized from the hydroxyethyl-substituted benzimidazolium salt and silver oxide by using in-situ deprotonation method. A structure of the Ag-NHC complex was characterized by using UV-Vis, FTIR, 1H-NMR and 13C-NMR spectroscopies and elemental analysis techniques. Also, the crystal structure of the novel complex was determined by single-crystal X-ray diffraction method. In this paper, compound 1 showed excellent inhibitory effects against some metabolic enzymes. This complex had Ki of 1.14 0.26 µM against human carbonic anhydrase I (hCA I), 1.88±0.20 µM against human carbonic anhydrase II (hCA I), and 10.75±2.47 µM against α-glycosidase, respectively. On the other hand, the Ki value was found as 25.32±3.76 µM against acetylcholinesterase (AChE) and 41.31±7.42 µM against butyrylcholinesterase (BChE), respectively. These results showed that the complex had drug potency against some diseases related to using metabolic enzymes.
Collapse
|
37
|
Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127453] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Bytyqi-Damoni A, Kestane A, Taslimi P, Tuzun B, Zengin M, Bilgicli HG, Gulcin İ. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Taslimi P, Sahin O, Yalçın B. Novel zinc compound with thiosemicarbazone of glyoxylic acid: Synthesis, crystal structure, and bioactivity properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Novel 2-methylimidazolium salts: Synthesis, characterization, molecular docking, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Bioorg Chem 2020; 94:103468. [DOI: 10.1016/j.bioorg.2019.103468] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
41
|
Taslimi P, Türkan F, Cetin A, Burhan H, Karaman M, Bildirici I, Gulçin İ, Şen F. Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials. Bioorg Chem 2019; 92:103213. [DOI: 10.1016/j.bioorg.2019.103213] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
|
42
|
Türker F, Gürses C, Barut Celepci D, Aktaş A, Ateş B, Gök Y. New morpholine‐liganded palladium(II)
N
‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure, and DNA‐binding studies. Arch Pharm (Weinheim) 2019; 352:e1900187. [DOI: 10.1002/ardp.201900187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ferhat Türker
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Canbolat Gürses
- Department of Molecular Biology and Genetics, Faculty of Scienceİnönü University Malatya Turkey
| | - Duygu Barut Celepci
- Department of Physics, Faculty of ScienceDokuz Eylül University Buca Izmir Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Scienceİnönü University Malatya Turkey
| |
Collapse
|
43
|
Topal F. Inhibition profiles of Voriconazole against acetylcholinesterase, α-glycosidase, and human carbonic anhydrase I and II isoenzymes. J Biochem Mol Toxicol 2019; 33:e22385. [PMID: 31478295 DOI: 10.1002/jbt.22385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
In this work, the inhibitory activity of Voriconazole was measured against some metabolic enzymes, including human carbonic anhydrase (hCA) I and II isoenzymes, acetylcholinesterase (AChE), and α-glycosidase; the results were compared with standard compounds including acetazolamide, tacrine, and acarbose. Half maximal inhibition concentration (IC50 ) values were obtained from the enzyme activity (%)-[Voriconazole] graphs, whereas Ki values were calculated from the Lineweaver-Burk graphs. According to the results, the IC50 value of Voriconazole was 40.77 nM for α-glycosidase, while the mean inhibition constant (Ki ) value was 17.47 ± 1.51 nM for α-glycosidase. The results make an important contribution to drug design and have pharmacological applications. In addition, the Voriconazole compound demonstrated excellent inhibitory effects against AChE and hCA isoforms I and II. Voriconazole had Ki values of 29.13 ± 3.57 nM against hCA I, 15.92 ± 1.90 nM against hCA II, and 10.50 ± 2.46 nM against AChE.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Laboratory Technology Program, Gumushane Vocational School, Gumushane University, Gumushane, Turkey
| |
Collapse
|
44
|
Akkoç S, Kayser V, İlhan İÖ. Synthesis and
In Vitro
Anticancer Evaluation of Some Benzimidazolium Salts. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3687] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Senem Akkoç
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel University Isparta 32260 Turkey
| | - Veysel Kayser
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
| | - İlhan Özer İlhan
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
| |
Collapse
|
45
|
Aktaş A, Barut Celepci D, Gök Y. Novel 2-hydroxyethyl substituted N-coordinate-Pd(II)(NHC) and bis(NHC)Pd(II) complexes: Synthesis, characterization and the catalytic activity in the direct arylation reaction. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Paudel P, Seong SH, Zhou Y, Park HJ, Jung HA, Choi JS. Anti-Alzheimer's Disease Activity of Bromophenols from a Red Alga, Symphyocladia latiuscula (Harvey) Yamada. ACS OMEGA 2019; 4:12259-12270. [PMID: 31460342 PMCID: PMC6682041 DOI: 10.1021/acsomega.9b01557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
Symphyocladia latiuscula (Harvey) Yamada is a red alga with a myriad of bromophenols accompanied by a diverse array of biological activities. The main purpose of the present study was to characterize the anti-Alzheimer's disease activity of bromophenols from S. latiuscula via inhibition of cholinesterases (AChE and BChE), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and glycogen synthase kinase-3β (GSK-3β). The results of enzyme inhibition assays demonstrated 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) as potent inhibitors of aforementioned enzymes. Among the tested bromophenols, 3 showed multifold higher inhibition of all of the tested enzymes. Enzyme kinetics revealed different modes of inhibition, and in silico molecular docking simulation demonstrated the importance of the 7-OH group and bromine number for H-bond and halogen-bond interactions, respectively. Similarly, 1-3 at 20 μM concentration showed more than 50% inhibition of self-induced Aβ25-35 aggregation. These results suggest that bromophenols from S. latiuscula, especially highly brominated (3), may represent a novel class of anti-Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Yajuan Zhou
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Hye Jin Park
- Department
of Food Science and Nutrition, Changshin
University, Gyeongsangnam-do, Changwon 51352, Republic of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Chonbuk
National University, Jeonju 54896, Republic of Korea
- E-mail: . Tel.: +82-63-270-4882. Fax: +82-63-270-3854 (H.A.J.)
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- E-mail: . Tel.: +82-51-629-5845. Fax: +82-51-629-5842 (J.S.C.)
| |
Collapse
|
47
|
Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg Chem 2019; 91:103134. [PMID: 31374523 DOI: 10.1016/j.bioorg.2019.103134] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022]
Abstract
In this work, the synthesis, crystal structure, characterization, and enzyme inhibition effects of the novel a series of 2-aminopyridine liganded Pd(II) N-heterocyclic carbene (NHC) complexes were examined. These complexes of the Pd-based were synthesized from PEPPSI complexes and 2-aminopyridine. The novel complexes were characterized by using 13C NMR, 1H NMR, elemental analysis, and FTIR spectroscopy techniques. Also, crystal structures of the two compounds were recorded by using single-crystal X-ray diffraction assay. Also, these complexes were tested toward some metabolic enzymes like α-glycosidase, aldose reductase, butyrylcholinesterase, acetylcholinesterase enzymes, and carbonic anhydrase I, and II isoforms. The novel 2-aminopyridine liganded (NHC)PdI2(2-aminopyridine) complexes (1a-i) showed Ki values of in range of 5.78 ± 0.33-22.51 ± 8.59 nM against hCA I, 13.77 ± 2.21-30.81 ± 4.87 nM against hCA II, 0.44 ± 0.08-1.87 ± 0.11 nM against AChE and 3.25 ± 0.34-12.89 ± 4.77 nM against BChE. Additionally, we studied the inhibition effect of these derivatives on aldose reductase and α-glycosidase enzymes. For these compounds, compound 1d showed maximum inhibition effect against AR with a Ki value of 360.37 ± 55.82 nM. Finally, all compounds were tested for the inhibition of α-glycosidase enzyme, which recorded efficient inhibition profiles with Ki values in the range of 4.44 ± 0.65-12.67 ± 2.50 nM against α-glycosidase.
Collapse
|
48
|
Wolińska E, Hałdys K, Góra J, Olszewski TK, Boduszek B, Latajka R. Phosphonic and Phosphinic Acid Derivatives as Novel Tyrosinase Inhibitors: Kinetic Studies and Molecular Docking. Chem Biodivers 2019; 16:e1900167. [DOI: 10.1002/cbdv.201900167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Ewa Wolińska
- Department of Bioorganic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Katarzyna Hałdys
- Department of Bioorganic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Jerzy Góra
- Department of Bioorganic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Tomasz K. Olszewski
- Department of Organic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Bogdan Boduszek
- Department of Organic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał Latajka
- Department of Bioorganic ChemistryWrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
49
|
Maheshwari N, Kumar M, Thakur IS, Srivastava S. Cloning, expression and characterization of β- and γ‑carbonic anhydrase from Bacillus sp. SS105 for biomimetic sequestration of CO2. Int J Biol Macromol 2019; 131:445-452. [DOI: 10.1016/j.ijbiomac.2019.03.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
|
50
|
Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: Ring opening of cyclopropane with monoester. Bioorg Chem 2019; 89:103017. [PMID: 31174041 DOI: 10.1016/j.bioorg.2019.103017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Trans-(1R*,2R*,3R*)-Ethyl 2-(3,4-dimethoxyphenyl)-3-methylcyclopropane-1-carboxylate (6) and its cis isomer 7 were obtained from the reaction of the methyl isoeugenol (5) with ethyl diazoacetate. The reduction and bromination reactions of the ester 6 and 7 together with the hydrolysis of all esters were carried out. Opening ring of cyclopropane was observed in the reaction of 7 with bromine. The opening of cyclopropane ring with COOR and synthesis of esters, alcohols and acids (6-26) are new. These obtained bromophenol derivatives (6-26) were effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 7.8 ± 0.9-58.3 ± 10.3 nM for hCA I, 43.1 ± 16.7-150.2 ± 24.1 nM for hCA II, and 159.6 ± 21.9-924.2 ± 104.8 nM for AChE, respectively. Acetylcholinesterase inhibitors are the most popular drugs applied in the treatment of diseases such as Alzheimer's disease, Parkinson's disease, senile dementia, and ataxia, among others.
Collapse
|