1
|
Murthy Potla K, Parameshwar Adimule S, Poojith N, Osório FAP, Valverde C, Sheena Mary Y, Vankayalapati S. A comparative study of structural and spectroscopic properties of three structurally similar mechanically bending organic single crystals - 2-Amino-3-nitro-5-halo (halo = Cl, Br, or I) pyridine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123093. [PMID: 37418906 DOI: 10.1016/j.saa.2023.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
In recent years, scientists have been very interested in single crystals of monoaromatic compounds with mechanical softness, but they are hard to find. The present work reports a comparative study of structural, spectroscopic, and quantum chemical investigations of three structurally similar mechanically bending monoaromatic compounds, namely, 2-amino-3-nitro-5-chloro pyridine (I), 2-amino-3-nitro-5-bromo pyridine (II), and 2-amino-3-nitro-5-iodo pyridine (III). The mechanical responses of the three organic crystals studied here are very intriguing due to the similarity of their chemical structures, which only differ in the presence of halogen atoms (Cl, Br, and I) at the fifth position of the pyridine ring and are explained through examining intermolecular interaction energies from energy frameworks analysis, slip layer topology, and Hirshfeld surface analysis. The crystals of all the three feature one dimensional ribbons comprising alternating NaminoH⋯Onitro and NaminoH⋯Npyridine hydrogen bonds that form R22(12) and R22(8) dimeric rings, respectively. In (III), weak I⋯I interactions link the adjacent ribbons forming a two dimensional sheet. Layer-like structures are observed in all three crystals, with no significant interactions between the adjacent architectures (ribbons or sheets). Energy framework calculations are used for estimating the bending ability of the three compounds, with the three following the order Cl ≪ Br < I. The iterative electrostatic scheme coupled with the supermolecule approach (SM) at the DFT/CAM-B3LYP/aug-cc-pVTZ level is used to calculate the third-order nonlinear susceptibility (χ3) values in a simulated crystalline environment for the static case as well as two typical electric field frequency values, (λ = 1064 nm) and (λ = 532 nm). In addition, estimates of the topological studies (localized orbital locator and electron localization function) and reactivity characteristics (global reactivity parameters, molecular electrostatic potential, and Fukui function) are made for the compounds under investigation. Docking studies done using AutoDock software with a protein target (PDB ID: 6CM4) revealed that three compounds could be used to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Krishna Murthy Potla
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), Kanuru 520 007, Vijayawada, Andhra Pradesh, India
| | - Suchetan Parameshwar Adimule
- Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumkur 572 103, Karnataka, India
| | - Nuthalapati Poojith
- Department of Pharmacology, Sri Ramachandra Institute of Higher Education and Research, Ramachandra Nagar, Porur, Chennai 600 116, India.
| | - Francisco A P Osório
- Instituto de Física, Universidade Federal de Goias, 74690-900 Goiânia, GO, Brazil; Pontifícia Universida de Católica de Goiás, 74605-100 Goiânia, GO, Brazil
| | - Clodoaldo Valverde
- Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Campus de CiênciasExatas e Tecnológicas, UniversidadeEstadual de Goiás, 75001-970 Anápolis, GO, Brazil; Universidade Paulista, 74845-090 Goiânia, GO, Brazil
| | | | - Suneetha Vankayalapati
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), Kanuru 520 007, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
2
|
Sheena Mary Y, Shyma Mary Y, Armaković S, Armaković SJ, Yadav R, Celik I, Razavi R. Investigation of reactive properties, adsorption on fullerene, DFT, molecular dynamics simulation of an anthracene derivative targeting dihydrofolate reductase and human dUTPase. J Biomol Struct Dyn 2022; 40:10952-10961. [PMID: 34278966 DOI: 10.1080/07391102.2021.1953602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anthracenes are aromatic compounds with flexible structure and reactivity which are of great interest to theoretical and experimental chemists. Theoretical investigations of 1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]anthracene-9,10-dione (Mitoxantrone) (DDEA) based on density functional theory, molecular dynamics and adsorption on fullerene are reported in the present research. The suitable situation for adsorption with fullerene (C60) is the cyclohex-2-ene-1,4-dione ring of DDEA. Selected quantum-molecular descriptors have been calculated to predict the most reactive sites of the DDEA molecule. Interactions of DDEA with water have been studied using MD simulations. MD simulations were also used to study solubility parameter, a significant quantity for the development of pharmaceutical formulations. The affinity of DDEA on human dihydrofolate reductase and deoxyuridine triphosphatase enzymes was investigated by MD simulation of the protein-ligand complex obtained by molecular docking study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Stevan Armaković
- Faculty of Sciences, Department of Physics, University of Novi Sad, Novi Sad, Serbia
| | - Sanja J Armaković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| |
Collapse
|
3
|
Koçak Aslan E, Krishna VS, Armaković SJ, Armaković S, Şahin O, Tønjum T, Gündüz MG. Linking azoles to isoniazid via hydrazone bridge: Synthesis, crystal structure determination, antitubercular evaluation and computational studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Structural, spectroscopic, and in silico studies of 3-(dimethylamino)-1-(thiophen-2-yl)propan-1-ol: A potential antidepressant agent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Al-Otaibi JS, Mary YS, Mary YS, Yadav R. Structural and reactivity studies of pravadoline –An ionic liquid, with reference to its wavefunction-relative properties using DFT and MD simulation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mary YS, Mary YS, Bielenica A, Armaković S, Armaković SJ, Chandramohan V, Dammalli M. Investigation of the reactivity properties of a thiourea derivative with anticancer activity by DFT and MD simulations. J Mol Model 2021; 27:217. [PMID: 34218339 DOI: 10.1007/s00894-021-04835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Spectroscopic analysis of 1-(2-fluorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (FPTT) is reported. Experimental and theoretical analyses of FPTT, with molecular dynamics (MD) simulations, are reported for finding different parameters like identification of suitable excipients, interactions with water, and sensitivity towards autoxidation. Molecular dynamics and docking show that FPTT can act as a potential inhibitor for new drug. Additionally, local reactivity, interactivity with water, and compatibility of FPTT molecule with frequently used excipients have been studied by combined application of density functional theory (DFT) and MD simulations. Analysis of local reactivity has been performed based on selected fundamental quantum-molecular descriptors, while interactivity with water was studied by calculations of radial distribution functions (RDFs). Compatibility with excipients has been assessed through calculations of solubility parameters, applying MD simulations. Graphical abstract Reactive sites identified.
Collapse
Affiliation(s)
| | | | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warszawa, Poland
| | - Stevan Armaković
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg D. Obradovića 4, Novi Sad, 21000, Serbia
| | - Sanja J Armaković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg D. Obradovića 3, Novi Sad, 21000, Serbia
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| |
Collapse
|
7
|
Gamberini MC, Mary YS, Mary YS, Krátký M, Vinsova J, Baraldi C. Spectroscopic investigations, concentration dependent SERS, and molecular docking studies of a benzoic acid derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119265. [PMID: 33316651 DOI: 10.1016/j.saa.2020.119265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering of 4-((3-bromo-5-chloro-2-hydroxybenzylidene)amino)benzoic acid (BCHB) have been studied on different silver colloids concentrations in order to know the particular chemical species responsible for the spectra. For Raman and surface enhanced Raman scattering (SERS) wavenumbers, changes are observed. Observed variations in the modes of ring may be due to interaction of the π-electrons and presence of this indicated that RingII is more inclined than RingI and the BCHB assumes inclined orientation for concentration 10-3 M. Changes in orientation are seen in SERS spectra depending on concentration. In order to determine the electron-rich and poor sites of BCHB, the molecular electrostatic potential was also constructed. The molecular docking studies show that the bindings and interactions with the receptors may be supporting evidence for further studies in design further BCHB pharmaceutical applications.
Collapse
Affiliation(s)
- Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Y Shyma Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India
| | - Y Sheena Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India.
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Vinsova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
8
|
An analysis of structural, spectroscopic, quantum chemical and in silico studies of ethyl 3-[(pyridin-2-yl)amino]propanoate: A potential thrombin inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Bisong EA, Louis H, Unimuke TO, Odey JO, Ubana EI, Edim MM, Tizhe FT, Agwupuye JA, Utsu PM. Vibrational, electronic, spectroscopic properties, and NBO analysis of p-xylene, 3,6-difluoro-p-xylene, 3,6-dichloro-p-xylene and 3,6-dibromo-pxylene: DFT study. Heliyon 2020; 6:e05783. [PMID: 33385089 PMCID: PMC7772552 DOI: 10.1016/j.heliyon.2020.e05783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/26/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022] Open
Abstract
This study explains the vibration and interaction of p-xylene and effect of three elements (fluorine, chlorine and bromine) of the halogen family substitution on it. Basic chemistry of four, compounds p-xylene (PX); 3,6-diflouro-p-xylene (DFPX); 3,6-dichloro-p-xylene (DCPX) and 3,6-dibromo-p-xylene (DBPX) has been explained extensively using theoretical approach. Vibrational energy distribution analysis (VEDA) software was used to study the potential energy distribution (PED) analysis, bond length, bond angles and dihedral angles of PX, DFPX, DCPX, DBPX after optimization with GAUSSIAN 09 software. The trend in chemical reactivity and stability of the studied compounds was observed to show increasing stability and decreasing reactivity moving from DBPX, DCPX, DFPX to PX and this was obtained from the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) values. Our results show that PX is the best electron donor (best nucleophile) while DBPX is the best electron acceptor (the best electrophile). We also observed that the substituted halogen increases the value of the bond angles but the effect is reduced as the size of the halogen increases. The maximum intensity and the frequency value for the maximum intensity of the different compounds was determined using the VEDA 04 software. From our natural bond orbital (NBO) 7.0 program analysis, the studied compounds are said to show biological activities as well as the intramolecular hyperconjugative interactions responsible for stabilizing the compounds. The NBO results also revealed that the non-bonding interaction existing between the lone pair electron on the halogen atoms and the aromatic ring increases the stability of the halogen substituted para-xylene molecules. Multiwfn: A Multifunctional Wavefunction Analyzer was used for the spectroscopic plots.
Collapse
Affiliation(s)
- Emmanuel A Bisong
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Hitler Louis
- Computational Quantum Chemistry Research Group, Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Tomsmith O Unimuke
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Joseph O Odey
- Department of Textile and Polymer Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel I Ubana
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Moses M Edim
- Department of Chemistry, Cross River University of Technology, Calabar, Calabar, Cross River State, Nigeria
| | | | - John A Agwupuye
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.,Computational Quantum Chemistry Research Group, Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.,Department of Textile and Polymer Engineering, Ahmadu Bello University, Zaria, Nigeria.,Institute of Chemistry, Chinese Academy of Sciences, 10900 Beijing, China.,Department of Chemistry, Cross River University of Technology, Calabar, Calabar, Cross River State, Nigeria
| | - Patrick M Utsu
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| |
Collapse
|
10
|
FT-IR and FT-Raman investigation, quantum chemical studies, molecular docking study and antimicrobial activity studies on novel bioactive drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-chlorophenyl)-5-(4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxo-4,5-dihydro-1,3-thiazol-5(4H)-ylidence]-2,3-dihydro-1H-indol-2-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Viji A, Balachandran V, Babiyana S, Narayana B, Saliyan VV. Molecular docking and quantum chemical calculations of 4-methoxy-{2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) PHENYL)-4, 5-dihydro-1H-pyrazol-1-yl]- 1, 3-thiazol-4-yl}phenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Poojith N, Potla KM, Osório FAP, Valverde C, Vankayalapati S, Suchetan PA, Raja M. Y-shaped potential third-order nonlinear optical material – 3-(2-amino-2-oxoethyl)-5-methyl hexanoic acid: an analysis of structural, spectroscopic and docking studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj02658a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merit of this work is that it has clearly established the structure and the nonlinear optical properties relationship of the title molecule and it could be helpful for developing new nonlinear optical materials.
Collapse
Affiliation(s)
| | - Krishna Murthy Potla
- Department of Chemistry
- Bapatla Engineering College (Autonomous)
- Acharya Nagarjuna University Post Graduate Research Centre
- Bapatla-522 102
- India
| | - Francisco A. P. Osório
- Instituto de Física
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Pontifícia Universidade Católica de Goiás
| | - Clodoaldo Valverde
- Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS)
- Campus de Ciências Exatas e Tecnológicas
- Universidade Estadual de Goiás
- Anápolis
- Brazil
| | - Suneetha Vankayalapati
- Sri Ramachandra Institute of Higher Education and Research
- Chennai
- India
- Department of Chemistry
- Bapatla College of Arts and Sciences
| | - P. A. Suchetan
- Department of Studies and Research in Chemistry
- University College of Science
- Tumkur University
- Tumkur-572 103
- India
| | - M. Raja
- Department of Physics
- Govt. Thirumagal Mills College
- Vellore
- India
| |
Collapse
|