1
|
Gamonchuang J, Meeklinhom S, Muangnapoh T, Imhan C, Chantho V, Sillapaprayoon S, Pimtong W, Warin C, Isanapong J, Ratanatawanate C, Kumnorkaew P. Eco-Friendly and Low-Cost Synthesis of Transparent Antiviral- and Antibacterial-Coated Films Based on Cu 2O and MIL-53(Al). ACS APPLIED BIO MATERIALS 2024. [PMID: 39450473 DOI: 10.1021/acsabm.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This research presents the development of an innovative antimicrobial coating consisting of cuprous oxide (Cu2O) integrated with the metal-organic framework MIL-53(Al) through an eco-friendly and low-cost synthesis method that employs glucose as a reducing agent under mild conditions. The microstructural properties of the composite materials were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The antibacterial efficacy of the Cu2O-MIL-53(Al) (CuM) composite was assessed against Escherichia coli and Staphylococcus aureus, achieving a reduction efficacy of 99.99% with 5% copper incorporated into the MIL-53(Al) framework within a contact time of 24 h. The incorporation of CuM into a macromolecular host matrix of polyurethane-carboxymethylcellulose (CuM/PUD-CMC), applied as a coating on a low-cost plastic film, produced a transparent film with 87.10% transparency. This coating demonstrated a 99.99% reduction in E. coli and S. aureus populations within a contact time of 24 h. The CuM/PUD-CMC coating demonstrated substantial antiviral efficacy, achieving inactivation rates of 99.35% for Human Coronavirus 229E, 99.40% for Influenza A virus, and 97.76% for Enterovirus 71 within a contact time of 5 min. The CuM nanoparticles exhibited low toxicity toward zebrafish while effectively eradicating bacteria and inactivating viruses. The proposed low-cost material and coating method demonstrate significant potential as a broad-spectrum antimicrobial and antiviral agent, highlighting its suitability for various applications in biomedical and healthcare formulations.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sorrawit Meeklinhom
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tanyakorn Muangnapoh
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalida Imhan
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jantiya Isanapong
- Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bang Sue, Bangkok 10800, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
3
|
Photo-Assisted Removal of Rhodamine B and Nile Blue Dyes from Water Using CuO-SiO 2 Composite. Molecules 2022; 27:molecules27165343. [PMID: 36014579 PMCID: PMC9413644 DOI: 10.3390/molecules27165343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Wastewater from the textile industries contaminates the natural water and affects the aquatic environment, soil fertility and biological ecosystem through discharge of different hazardous effluents. Therefore, it is essential to remove such dissolved toxic materials from water by applying more efficient techniques. We performed a comparative study on the removal of rhodamine B (RhB) and Nile blue (NB) from water through a catalytic/photocatalytic approach while using a CuO-SiO2 based nanocomposite. The CuO-SiO2 nanocomposite was synthesized through a sol-gel process using copper nitrate dihydrate and tetraethylorthosilicate as CuO and SiO2 precursors, respectively, with ammonia solution as the precipitating agent. The synthesized nanocomposites were characterized, for their structure, morphology, crystallinity, stability, surface area, pore size and pore volume, by using a scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. The CuO-SiO2 nanocomposite was used for potential environmental applications in the terms of its catalytic and photocatalytic activities toward the degradation of rhodamine B (RhB) and Nile blue (NB) dyes, in the presence and absence of light, while monitoring the degradation process of dyes by UV-Visible spectroscopy. The catalytic efficiency of the same composite was studied and discussed in terms of changes in the chemical structures of dyes and other experimental conditions, such as the presence and absence of light. Moreover, the composite showed 85% and 90% efficiency towards the removal of rhodamine B and Nile blue dyes respectively. Thus, the CuO-SiO2 nanocomposite showed better efficiency toward removal of Nile blue as compared to rhodamine B dye while keeping other experimental variables constant. This can be attributed to the structure-property relationships and compatibility of a catalyst with the molecular structures of dyes.
Collapse
|
4
|
Soğuksu AK, Kerli S, Kavgacı M, Gündeş A. Electrochemical Properties, Antimicrobial Activity and Photocatalytic Performance of Cerium-Iron Oxide Nanoparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently. Bioinorg Chem Appl 2022; 2022:2343167. [PMID: 35140761 PMCID: PMC8820933 DOI: 10.1155/2022/2343167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young’s modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure.
Collapse
|
6
|
Calabrese C, La Parola V, Testa ML, Liotta LF. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Zhu H, Wu KJ, He CH. Continuous Synthesis of Uniformly Dispersed Mesoporous SBA-15 Supported Silver Nanoparticles in a Coiled Flow Inverter Reactor. Front Chem 2021; 9:747105. [PMID: 34631668 PMCID: PMC8492998 DOI: 10.3389/fchem.2021.747105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mesoporous silica supported nanocatalysts have shown great potential in industrial processes due to their unique properties, such as high surface area, large pore volume, good chemomechanical stability and so on. Controllable and tunable synthesis of supported nanocatalysts is a crucial problem. Continuous synthesis of supported nanoparticles has been reported to get uniformly dispersed nanomaterials. Here, a method for continuous synthesis of uniformly dispersed mesoporous SBA-15 supported silver nanoparticles in a coiled flow inverter (CFI) microreactor is described. Compared to Ag/SBA-15 synthesized in the conventional batch reactor and Ag synthesized in continuous flow, mesoporous silica nanocatalysts synthesized in continuous flow are found to have smaller average size (7-11 nm) and narrower size distribution. The addition of capping agents can effectively change the characteristic of catalysts. Moreover, two kinds of support with different surface area and pore size have been added into the continuous synthesis. This method can provide further understandings for the synthesis of uniformly dispersed supported nanocatalysts in continuous flow, especially for mesoporous nanomaterials, which provides the possibilities of large-scale yield process of supported nanocatalysts in industry.
Collapse
Affiliation(s)
- Hai Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Ke-Jun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Chao-Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, Quzhou, China
| |
Collapse
|
8
|
Sun Y, Lei K, Lang M. Synthesis, structural characterization, antifouling and antibacterial properties of polypyridinium salt coated silica nanoparticles. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1936549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yunlong Sun
- Research Institute of Chemical Metallurgy, Jiangxi Copper Technology Research Institute Co., LTD., Nanchang, Jiang Xi, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Meidong Lang
- Shanghai Key Laboratory Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Keerthana SP, Yuvakkumar R, Ravi G, Kumar P, Elshikh MS, Alkhamis HH, Alrefaei AF, Velauthapillai D. A strategy to enhance the photocatalytic efficiency of α-Fe 2O 3. CHEMOSPHERE 2021; 270:129498. [PMID: 33422995 DOI: 10.1016/j.chemosphere.2020.129498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The photocatalytic dye degradation of pure α-Fe2O3 and different concentration of Co doped α-Fe2O3 is explored. Facile hydrothermal method were employed to prepare pristine, 2% and 4% Co-Fe2O3 nanoparticles. Further, synthesized product confirmation studies were employed from X-ray diffraction, UV-vis spectrometry, Fourier-transform infrared, Raman, scanning electron microscope and transmission electron microscope studies. The rhombohedral nanoparticles developed were enhanced photocatalytic action. Photocatalytic dye degradation studies were analyzed for prepared three samples and the photocatalytic efficacy of the obtained photocatalysts was compared experimentally. Methylene blue dye was degraded under UV-light irradiation with 364 nm. The results showed that 4% Co doped α-Fe2O3 sample exhibited better dye degradation with 92% efficiency. The 4% doping of cobalt ions enhanced the photocatalytic property of Fe2O3 and is a good candidate for methylene blue dye degradation above 90%. In addition, strategy for photocatalytic efficiency enhancement was proposed.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, India
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hussein H Alkhamis
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed F Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway.
| |
Collapse
|
10
|
Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021; 7:e06456. [PMID: 33763612 PMCID: PMC7973307 DOI: 10.1016/j.heliyon.2021.e06456] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
The scientific explorations of nanoparticles for their inherent therapeutic potencies as antimicrobial and antiviral agents due to increasing incidences of antibiotic resistance have gained more attention in recent time. This factor amongst others necessitates the search for newer and more effective antimicrobial agents. Several investigations have demonstrated the prospects of nanoparticles in the treatment of various microbial infections. The therapeutic applications of nanoparticles as either delivery agent or broad spectrum inhibition agents in viral and microbial investigations can no longer be overlooked. Their large surface area to volume ratio made them an indispensable substance as delivery agents in many respect. Various materials have been used for the synthesis of nanoparticles with unique properties channelised to meet specific therapeutic requirement. This review focuses on the antibacterial, antifungal, and antiviral potential of nanoparticles with their probable mechanism of action.
Collapse
Affiliation(s)
- Shabnam Sharmin
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mizanur Rahaman
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Landmark University, P.M.B. 1001, Omu-Aran 251101, Kwara State, Nigeria
| |
Collapse
|
11
|
Chen Q, Nie Y, Ming M, Fan G, Zhang Y, Hu JS. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63652-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 2020; 150:861-870. [DOI: 10.1016/j.ijbiomac.2020.02.093] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
|
13
|
Ye Q, Chen W, Huang H, Tang Y, Wang W, Meng F, Wang H, Zheng Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2020; 104:5213-5227. [PMID: 32303820 DOI: 10.1007/s00253-020-10600-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Drug-resistant bacteria are becoming an increasingly widespread problem in the clinical setting. The current pipeline of antibiotics cannot provide satisfactory options for clinicians, which brought increasing attention to the development and application of non-traditional antimicrobial substances as alternatives. Metal ions, such as iron and zinc ions, have been widely applied to inhibit pathogens through different mechanisms, including synergistic action with different metabolic enzymes, regulation of efflux pumps, and inhibition of biofilm formation. Compared with traditional metal oxide nanoparticles, iron oxide nanoparticles (IONPs) and zinc oxide nanoparticles (ZnO-NPs) display stronger bactericidal effect because of their smaller ion particle sizes and higher surface energies. The combined utilization of metal NPs (nanoparticles) and antibiotics paves a new way to enhance antimicrobial efficacy and reduce the incidence of drug resistance. In this review, we summarize the physiological roles and bactericidal mechanisms of iron and zinc ions, present the recent progress in the research on the joint use of metal NPs with different antibiotics, and highlight the promising prospects of metal NPs as antimicrobial agents for tackling multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qian Ye
- College of Biotechnology and pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211806, China.,Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yishan Zheng
- Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
14
|
Ali DA, El-Katori EE, Kasim EA. Sol-Gel Sonochemical Triton X-100 Templated Synthesis of Fe2O3/ZnO Nanocomposites Toward Developing Photocatalytic Degradation of Organic Pollutants. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The existing work emphasizes mainly to advance the low surface features of zinc oxide (ZnO) by dispersion of Fe2O3 nanoparticles on the ZnO surface fabricated via a sol-gel route with Triton X-100 as a structure and capping agent to synthesis a novel series of Fe2O3/ZnO nanocomposites (NCs) with novel features assembling between the two nanoparticle materials. Fe2O3/ZnO is an effective semiconductor which has higher efficiency in the removal of numerous organic dyes and other pollutants. The NCs was characterized via HRTEM, XRD, FTIR, BET, RS and UV–Vis DRS. A photocatalytic performance of the fabricated Fe2O3/ZnO nanocomposites was estimated by continual degradation of the methylene blue dye (MB) as an organic pollutant in aqueous solution. The comparison between pure ZnO (NPs) and Fe2O3/ZnO (NCs) show advanced photocatalytic performance under both UV and sunlight irradiation. The impact of several parameters, for example, dopant contents, photocatalytic dosage, pH, chemical oxygen demand (COD) and point of zero charge (PZC) were evaluated and discussed. In addition, the protective species’ role was estimated via a radical scavenger route. The photo-degradation data shown that the Fe2O3/ZnO (10 wt%) semiconductor is the fit photocatalyst between the fabricated semiconductors for the methylene blue dye (MB) degradation. The intensity reduction peak of UV emission and the intensity increment of visible emission were led to the lessening in recombination between electrons and holes which are finally responsible for the maximum photocatalytic performance of Fe2O3/ZnO nanocomposites. The gained results confirmed that the dopant content is the major factor in photocatalytic degradation activity.
Collapse
Affiliation(s)
- Doaa A. Ali
- Department of Chemistry, Faculty of Science , The New Valley University , El-Kharja-72511 , Egypt
| | - Emad E. El-Katori
- Department of Chemistry, Faculty of Science , The New Valley University , El-Kharja-72511 , Egypt , Tel.: +201023318210, Fax: +2927925393, e-mail:
| | - Ensaf Aboul Kasim
- Department of Chemistry, Faculty of Science , The New Valley University , El-Kharja-72511 , Egypt
| |
Collapse
|
15
|
Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.139] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Wang F, Zhang J, Jia D, Ma Y, Ma L, Lu G. Flower-like structured Fe3O4−MQDs/Bi2WO6/GNs heterojunction with high-efficiently charge transfer for organic contaminants degradation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Majid F, Nazir A, Ata S, Bibi I, Mehmood HS, Malik A, Ali A, Iqbal M. Effect of Hydrothermal Reaction Time on Electrical, Structural and Magnetic Properties of Cobalt Ferrite. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2019-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Cobalt ferrite was synthesized by hydrothermal route in order to investigate the effect of hydrothermal reaction time on structural, magnetic and dielectric properties. The synthesized cobalt ferrite was characterized by X-ray diffraction, Fourier transform infrared and Vibrating-Sample Magnetometer (VMS). XRD data analysis confirmed the formation of cubic inverse spinel ferrite for complete time series as the high intensity peak corresponds to cubic normal spinel structure. The ionic radii, cation distribution among tetrahedral and octahedral sites, lattice parameters, X-ray density, bond lengths were also investigated cobalt ferrite prepared at different hydrothermal reaction time. The crystallite size was found to be in the range of 11.79–32.78 nm. Tolerance factor was near unity that also confirms the formation of cubic ferrites. VSM studies revealed the magnetic nature of cobalt ferrite. The coercivity (1076.3Oe) was observed for a sample treated for 11 h. The squareness ratio was 0.56 that is close to 0.5 which shows uniaxial anisotropy in cobalt ferrite. Frequency dependent dielectric properties i.e. dielectric constant, AC conductivity, tangent loss and AC resistivity are calculated with the help of Impedance Analyzer. Intrinsic cation vibration of cubic spinel ferrites are confirmed from FTIR analysis in the range of 400–4000 cm−1. In view of enhanced properties, this technique could possibly be used for the synthesis of cobalt ferrite for different applications.
Collapse
Affiliation(s)
- Farzana Majid
- Department of Physics , University of the Punjab , Lahore , Pakistan
| | - Amarah Nazir
- Department of Physics , University of the Punjab , Lahore , Pakistan
| | - Sadia Ata
- Department of Chemistry , University of Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Hafiz Shahid Mehmood
- Department of Electrical Engineering , The University of Lahore , Lahore , Pakistan
| | - Abdul Malik
- National Institute of Laser and Optronics (NILOP) , Islamabad , Pakistan
| | - Adnan Ali
- Department of Physics , Government College University Faisalabad , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
18
|
Mozafari R, Heidarizadeh F. Phosphotungstic acid supported on SiO2@NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo[b]pyran and indazolo[2,1-b]phthalazine-triones. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|