1
|
Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, Yu SQ, Cai JY, Sun B, Zhang WC, Shan CL. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 2024; 45:1044-1059. [PMID: 38326625 PMCID: PMC11053100 DOI: 10.1038/s41401-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xiao-Ya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xin-Tong Dai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yun-Feng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ming-Ming Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Si-Qi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jia-You Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Wei-Cheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Chang-Liang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
2
|
Miyakita D, Kawanishi K, Katsuyama A, Yamamoto K, Yakushiji F, Ichikawa S. Solid-Phase Synthesis of Nannocystin Ax and Its Analogues. J Org Chem 2023. [PMID: 37466434 DOI: 10.1021/acs.joc.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Solid-phase total synthesis of nannocystin Ax (1) was disclosed. A coupling reaction between a peptide and a polyketide moiety was conducted on a solid support, and macrocyclization was achieved by Mitsunobu cyclization. The established synthetic route was efficient to prepare its analogues, which contain different types of peptide moieties.
Collapse
Affiliation(s)
- Daiki Miyakita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Kawanishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int J Mol Sci 2023; 24:ijms24098252. [PMID: 37175956 PMCID: PMC10179193 DOI: 10.3390/ijms24098252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The intramolecular Heck reaction is a well-established strategy for natural product total synthesis. When constructing large rings, this reaction is also referred to as Heck macrocyclization, which has proved a viable avenue to access diverse naturally occurring macrocycles. Less noticed but likewise valuable, it has created novel macrocycles of non-natural origin that neither serve as nor derive from natural products. This review presents a systematic account of the title reaction in forging this non-natural subset of large rings, thereby addressing a topic rarely covered in the literature. Walking through two complementary sections, namely (1) drug discovery research and (2) synthetic methodology development, it demonstrates that beyond the well-known domain of natural product synthesis, Heck macrocyclization also plays a remarkable role in forming synthetic macrocycles, in particular macrocyclic drugs.
Collapse
Affiliation(s)
- Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
5
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
6
|
Kataria P, Nomula R, Kontham R. Studies directed toward the synthesis of hedycoropyrans: total synthesis of des-hydroxy (-)-hedycoropyran B ( ent-rhoiptelol B). Org Biomol Chem 2022; 20:444-463. [PMID: 34904991 DOI: 10.1039/d1ob01972d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A full account of our efforts directed towards the synthesis of the diarylheptanoid-derived natural products hedycoropyrans that led to the total synthesis of ent-rhoiptelol B is described. In this endeavor, we have attempted two distinct synthetic strategies to access hedycoropyrans A and B, which led us to establish a facile synthetic route for des-hydroxy (-)-hedycoropyran B (ent-rhoiptelol B) from simple and readily accessible building blocks of 4-allylanisole and vanillin, employing Sharpless asymmetric epoxidation, CBS reduction, and an intramolecular AgOTf-catalyzed oxa-Michael reaction of suitably functionalized hydroxy-ynone as key transformations. The investigations disclosed herein will provide insights into designing novel synthetic routes for THP-DAH-derived natural products.
Collapse
Affiliation(s)
- Priyanka Kataria
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Nomula
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Optimization of Two Steps in Scale-Up Synthesis of Nannocystin A. Mar Drugs 2021; 19:md19040198. [PMID: 33807472 PMCID: PMC8066987 DOI: 10.3390/md19040198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023] Open
Abstract
We have accomplished a 10-step (longest linear) total synthesis of nannocystin A on a four hundred milligram scale. The previously reported Kobayashi vinylogous Mukaiyama aldol reaction to connect C4 and C5 was unreproducible during the scaling up process. A more convenient and cost-efficient Keck asymmetric vinylogous aldol reaction was employed to improve this transformation.
Collapse
|
8
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
9
|
Zhang W. Heck macrocyclization in natural product total synthesis. Nat Prod Rep 2021; 38:1109-1135. [PMID: 33662070 DOI: 10.1039/d0np00087f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1981-2020 Heck macrocyclization is a logical extension of the award-winning Mizoroki-Heck reaction. Through covalent linking of two otherwise discrete coupling partners, the resultant chimeric substrate is transformed into a large ring with enhanced rigidity and unique functional group disposition. Pioneered in the early 1980s, this methodology has evolved into a competent option for creating diverse macrocycles. Despite its growing influence, hitherto no systematic survey has ever appeared in the literature. The present review delineates the state-of-the-art of Heck macrocyclization in the context of natural product synthesis. Sixteen selected cases, each examined from a different perspective, coalesce into the view that the title reaction is a viable tool for synthesis-enabled macrocycle research.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| |
Collapse
|
10
|
From Target-Oriented to Motif-Oriented: A Case Study on Nannocystin Total Synthesis. Molecules 2020; 25:molecules25225327. [PMID: 33203102 PMCID: PMC7697126 DOI: 10.3390/molecules25225327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
Natural product total synthesis is in essence target-oriented in that a set of organic transformations are orchestrated into a workable process, leading ultimately to the target molecule with a predefined architecture. For a bioactive lead, proof of synthetic viability is merely the beginning. Ensuing effort repurposes the initial synthesis for structural diversification in order to probe structure-activity relationship (SAR). Yet accessibility is not equal to flexibility; moving from convergency to divergency, it is not always feasible to explore the chemical space around a particular substructure of interest simply by tweaking an established route. In this situation, the motif-oriented strategy becomes a superior choice, which gives priority to synthetic flexibility at the concerned site such that a route is adopted only if it is capable of implementing diversification therein. This strategy was recently devised by Fürstner et al., enabling them to achieve total synthesis of both natural and non-natural nannocystins varied at an otherwise challenging position. The present review examines seven distinctive nannocystin total syntheses reported thus far and showcases the merits of conventional (target-oriented) as well as motif-oriented strategies, concluding that these two approaches complement each other and are both indispensable for natural product based drug discovery.
Collapse
|