1
|
Pokidova OV, Emel'yanova NS, Kormukhina AY, Novikova VO, Kulikov AV, Kotelnikov AI, Sanina NA. Albumin as a prospective carrier of the nitrosyl iron complex with thiourea and thiosulfate ligands under aerobic conditions. Dalton Trans 2022; 51:6473-6485. [PMID: 35394482 DOI: 10.1039/d2dt00291d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-molecular-weight dinitrosyl iron complexes (DNICs) are formed in living systems and are a stable depot of nitrogen monoxide (NO). In this work, using experimental and theoretical methods, we investigated the interaction of their synthetic analog, a promising cardiotropic complex of the composition [Fe(SC(NH2)2)2(NO)2]2[Fe2(S2O3)2(NO)4], with bovine serum albumin (BSA) in aqueous aerobic solutions. We suggested that, under these conditions, the decomposition product of the initial complex with oxygen, the [Fe(NO)(NO2)]+ fragment, can bind in the hydrophobic pocket of the protein. As a result of this interaction, high-molecular-weight Fe(Cys34)(His39)(NO)(NO2) is formed. The binding constant of the complex with protein measured by the quenching of intrinsic fluorescence of BSA is 7.2 × 105 M-1. According to EPR and UV-spectroscopy data, the interaction of the complex with the protein leads to its significant stabilization. In addition to coordination binding, the studied complex can be adsorbed onto the protein surface due to weak intermolecular interactions, resulting in the prolonged generation of NO.
Collapse
Affiliation(s)
- Olesya V Pokidova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Nina S Emel'yanova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexandra Yu Kormukhina
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Veronika O Novikova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation.
| | - Alexander V Kulikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Alexander I Kotelnikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Natalia A Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Acad. Semenova, 142432 Chernogolovka, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russian Federation.,Scientific and Educational Center "Medical Chemistry" of Moscow State Regional University, 24 Vera Voloshina St., 141014 Mytishchi, Moscow Region, Russian Federation
| |
Collapse
|
2
|
Carvalho EM, Ridnour LA, Júnior FSG, Cabral PHB, do Nascimento NRF, Wink DA, Franco DW, de Medeiros MJC, de Lima Pontes D, Longhinotti E, de Freitas Paulo T, Bernardes-Génisson V, Chauvin R, Sousa EHS, Lopes LGDF. A divergent mode of activation of a nitrosyl iron complex with unusual antiangiogenic activity. J Inorg Biochem 2020; 210:111133. [PMID: 32619898 DOI: 10.1016/j.jinorgbio.2020.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) and nitroxyl (HNO) have gained broad attention due to their roles in several physiological and pathophysiological processes. Remarkably, these sibling species can exhibit opposing effects including the promotion of angiogenic activity by NO compared to HNO, which blocks neovascularization. While many NO donors have been developed over the years, interest in HNO has led to the recent emergence of new donors. However, in both cases there is an expressive lack of iron-based compounds. Herein, we explored the novel chemical reactivity and stability of the trans-[Fe(cyclam)(NO)Cl]Cl2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex. Interestingly, the half-life (t1/2) for NO release was 1.8 min upon light irradiation, vs 5.4 h upon thermal activation at 37 °C. Importantly, spectroscopic evidence supported the generation of HNO rather than NO induced by glutathione. Moreover, we observed significant inhibition of NO donor- or hypoxia-induced HIF-1α (hypoxia-inducible factor 1α) accumulation in breast cancer cells, as well as reduced vascular tube formation by endothelial cells pretreated with the trans-[Fe(cyclam)(NO)Cl]Cl2 complex. Together, these studies provide the first example of an iron-nitrosyl complex with anti-angiogenic activity as well as the potential dual activity of this compound as a NO/HNO releasing agent, which warrants further pharmacological investigation.
Collapse
Affiliation(s)
- Edinilton Muniz Carvalho
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil; CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Lisa A Ridnour
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD 21702, United States
| | - Florêncio Sousa Gouveia Júnior
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Pedro Henrique Bezerra Cabral
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará-UECE, Paranjana Av, 1700, Fortaleza, Ceará 60740-00, Brazil
| | | | - David A Wink
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD 21702, United States
| | - Douglas W Franco
- Instituto de Química de São Carlos, Universidade de São Paulo-USP, P.O. Box 780, São Carlos, SP CEP 13566-590, Brazil
| | - Mayara Jane Campos de Medeiros
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal CEP 59078-970, Brazil
| | - Daniel de Lima Pontes
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte (UFRN), Natal CEP 59078-970, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil
| | - Vania Bernardes-Génisson
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Remi Chauvin
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse, Cedex 4, France; Université de Toulouse, UPS, INPT, F-31077 Toulouse, Cedex 4, France
| | - Eduardo Henrique Silva Sousa
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil.
| | - Luiz Gonzaga de França Lopes
- Departamento de Química Orgânica e Inorgânica, Grupo de Bioinorgânica, Universidade Federal do Ceará-UFC, P.O Box 6021, Fortaleza, CE CEP 60440-900, Brazil.
| |
Collapse
|
4
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|