1
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
2
|
Dong H, Che Y, Zhu X, Zhong Y, Lin J, Wang J, Du W, Song T. Total Syntheses and Antibacterial Studies of Natural Isoflavones: Scandenone, Osajin, and 6,8-Diprenylgenistein. Molecules 2024; 29:2574. [PMID: 38893450 PMCID: PMC11173660 DOI: 10.3390/molecules29112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Isoflavones are a class of natural products that exhibit a wide range of interesting biological properties, including antioxidant, hepatoprotective, antimicrobial, and anti-inflammatory activities. Scandenone (1), osajin (2), and 6,8-diprenylgenistein (3) are natural prenylated isoflavones that share the same polyphenol framework. In this research, the key intermediate 15 was used for the synthesis of the natural isoflavones 1-3, establishing a stereoselective synthetic method for both linear and angular pyran isoflavones. The antibacterial activities of 1-3 were also evaluated, and all of them displayed good antibacterial activity against Gram-positive bacteria. Among them, 2 was the most potent one against MRSA, with a MIC value of 2 μg/mL, and the SEM assay indicated that the bacterial cell membranes of both MRSA and E. faecalis could be disrupted by 2. These findings suggest that this type of isoflavone could serve as a lead for the development of novel antibacterial agents for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Hongbo Dong
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yufei Che
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xingtong Zhu
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Zhong
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jiafu Lin
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian Wang
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Weihong Du
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tao Song
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
4
|
Umoh SD, Bojase G, Masesane IB, Majinda RT, Sichilongo KF. Untargeted GC-MS metabolomics to identify and classify bioactive compounds in Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:127-138. [PMID: 36377224 DOI: 10.1002/pca.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Combretum platypetalum is used in traditional African healing practices against different infections. Unfortunately, no scientific knowledge of its phytochemical composition exists, except for the isolation of two compounds from the leaves. Scientific study has been limited to the leaves only, despite the applications of stems and roots in traditional medicine practice and natural product drug discovery programs. OBJECTIVE Omics was applied to identify and classify different volatile and semivolatile bioactive compounds in the leaf, stem, and root parts of C. platypetalum. The thermal stability of the plant constituents at 60-65°C extraction temperature by Soxhlet and maceration at room temperature on the type, class, and concentration of compounds in the leaf was further investigated. METHOD A GC-MS untargeted metabolomics approach, automated deconvolution by the Automated Mass Spectral Deconvolution and Identification System (AMDIS) for GC-MS data, preprocessing by Metab R, and multivariate statistical data analysis were employed in this study. RESULTS A total of 97 phytoconstituents, including 17 bioactive compounds belonging to the terpenoids, flavonoids, long-chain fatty acids, and other unclassified structural arrangements distributed across C. platypetalum, were identified for the first time. A correlation (r = 0.782; P = 0.000) between Soxhlet and maceration extraction methods relative to resolved chromatographic peak areas of metabolites was established. CONCLUSION Findings corroborate the reported bio-investigation of its leaf extracts, its traditional uses, and previous findings from the Combretum genus. The results substantiate the possible applications of C. platypetalum in natural product drug discovery and provide a guide for future investigations.
Collapse
Affiliation(s)
- Sampson D Umoh
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, formerly known as University of Agriculture, Makurdi Nigeria PMB, Makurdi, Nigeria
| | - Gomotsang Bojase
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Ishmael B Masesane
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Runner T Majinda
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Kwenga F Sichilongo
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
5
|
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem 2022; 22:1009-1019. [PMID: 35189804 DOI: 10.2174/1568026622666220221110506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Flavonoids, a wide variety of phenolic secondary metabolites, are found in almost all plant families in the leaves, stems, roots, flowers, and seeds. Flavonoids could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism, and inhibiting the synthesis of nucleic acids, so flavonoids are considered constitutive antibacterial substances. This review aims to outline the recent advances of natural-derived flavonoids, including flavonoid glycosides with antibacterial potential to provide novel antibacterial lead hits/candidates, covering articles published between January 2016 and July 2021.
Collapse
Affiliation(s)
- Zhenyou Tan
- Guangdong Xianqiang Pharmaceutical Co., Ltd, Guangzhou, P. R. China
| | - Jun Deng
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Qiongxian Ye
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Zhenfeng Zhang
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| |
Collapse
|
6
|
Yao Z, Wang L, Cai D, Jiang X, Sun J, Wang Y, Bai W. Warangalone Induces Apoptosis in HeLa Cells via Mitochondria-Mediated Endogenous Pathway. EFOOD 2022. [DOI: 10.53365/efood.k/145663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer as one of the major malignant tumors seriously threatens women's health. More than 270,000 women die of cervical cancer each year. Warangalone is an isoflavone compound isolated from Cudrania tricuspidata with excellent antitumor activity. In this research, we investigated the molecular mechanism of warangalone-induced apoptosis in HeLa cells. The results show that warangalone can selectively and effectively inhibit HeLa cells proliferation. Warangalone can effectively inhibit the invasion and migration of HeLa cells. Furthermore, warangalone was confirmed to activate p53 and mitogen-activated protein kinase (MAPK) family signaling pathways to cause apoptosis. In this case, the expression of the B-cell lymphoma-2 (Bcl-2) family is regulated, and caspase-3 is eventually cleaved, finally triggering the mitochondrial apoptosis. In conclusion, warangalone can induce HeLa cells apoptosis via a mitochondria-mediated endogenous pathway, which represented the potential therapeutic effect of warangalone on cervical cancer.
Collapse
|
7
|
Goel B, Tripathi N, Bhardwaj N, Sahu B, Jain SK. Therapeutic Potential of Genus Pongamia and Derris: Phytochemical and Bioactivity. Mini Rev Med Chem 2021; 21:920-951. [PMID: 33238843 DOI: 10.2174/1389557520999201124211846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Genus Pongamia and Derris belong to the Leguminosae family and are reported synonymously in literature. Although many compounds have been isolated from different plant parts but seed oil is known to produce non-edible medicinally important furanoflavonoids. The seed oil, commonly known as Karanj oil in Ayurvedic and Siddha traditional systems of medicine, is reported for the treatment of various skin infections and psoriasis. Several phytopharmacological investigations have proved the medicinal potential of furanoflavonoids in the skin and other disorders. Not only furanoflavonoids but several other important phenolic constituents such as chalcones, dibenzoylmethanes, aurones, isoflavones, flavanone dihydroflavonol, flavans, pterocarpans, rotenoids, coumarins, coumestans, stilbenoids and peltygynoids and their glycosides have been reported for different biological activities including antihyperglycemic, anti-inflammatory, anticancer, insecticidal, anti-alzheimer's, gastro protective, antifungal, antibacterial, etc. In the present review, the phytochemistry and pharmacological activities of the genera Pongamia and Derris have been summarized.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Bharat Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|