1
|
Zehra S, Khan HY, Roisnel T, Tabassum S, Arjmand F. Structural insights into interactions of new polymeric (μ-oxo) bridged Cu(II) complexes of taurine with yeast tRNA by spectroscopic and computational approaches and its application towards chemoresistant cancer lines. Int J Biol Macromol 2023; 240:124429. [PMID: 37062375 DOI: 10.1016/j.ijbiomac.2023.124429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
RNA-targeted drugs are considered as safe treatment option for the cure of many chronic diseases preventing off-targeted delivery and acute toxic manifestations. FDA has approved many such RNA therapies in different phases of clinical trials, validating their use for the treatment of various chronic diseases. We report herein, new water-soluble (μ-oxo) bridged polymeric Cu(II) complexes of taurine (2-aminoethane sulfonic acid) complexes 1 and 2. The therapeutic potency of 1 and 2 was ascertained by studying biophysical interactions with tRNA/ct-DNA. The experimental results demonstrated that the complexes interacted avidly to nucleic acids through intercalation mode depicting a specific preference for tRNA in comparison to ct-DNA and, moreover 2 showed higher binding propensity than 1. The electrophoretic behaviour of the complexes with plasmid pBR322 DNA and tRNA were examined by gel mobility assay that revealed a concentration-dependent activity with complex 2 performing more efficient cleavage as compared to complex 1. Cytotoxicity results on cancer cell strains displayed higher cytotoxicity than complex 1 against treated cancer cells. The synthesized copper(II) taurine complexes have met the basic criteria of anticancer drug design as they are structurally well-characterized, exhibiting good solubility in water, lipophilic in nature with superior intercalating propensity towards tRNA and cytotoxic in nature.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Huzaifa Yasir Khan
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, Campus de Beaulieu Batiment 10B, Bureau, 15335042 Rennes, France
| | - Sartaj Tabassum
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Farukh Arjmand
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
2
|
Zahraee Z, Golchoubian H. Solvatochromic, Halochromic and Thermochromic Effects of Copper(II) Complexes Containing N-tert-butyl 2-Picolylamine, and Halide Ion; a Computational Study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Nadarkhani S, Golchoubian H, Shirvan A. Synthesis, Crystal structure, and Chromotropism properties of Dihalo N-2-ethanolpicolylamine Copper(II). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Dos Santos TM, Martins CC, Bueno DT, Nunes IJ, Busatto FF, Cargnelutti R, Luchese C, de Lazaro Casagrande O, Saffi J, Wilhelm EA, Pinheiro AC. Synthesis, molecular structure and antioxidant activity of bis [L(μ 2-chloro)copper(II)] supported by phenoxy/naphthoxy-imine ligands. J Inorg Biochem 2020; 210:111130. [PMID: 32563104 DOI: 10.1016/j.jinorgbio.2020.111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
A new series of Cu(II) complexes [bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2,4-tert-butyl-2-OC6H2)}Cu(II)] (Cu1); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu2); bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2-(OC10H6)} Cu(II)] (Cu3); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2-(OC10H6)}Cu(II)] complex (Cu4); bis[{2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu5)] have been synthesized and characterized by elemental analysis, IR, UV-Visible and by X-ray crystallography for Cu1, Cu4 and Cu5. In the solid state, Cu1 features of a chloro-bridged dimer complex with κ2 coordination of the monoanionic phenoxy-imine ligand onto the copper center. On the other hand, the molecular structure of Cu4 reveals the naphthoxy-imine ligand with pendant S-group coordinated to the copper atom in tridentate meridional fashion. Treatment of [Cu(OAc)2·H2O] with two equiv. of [2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(HOC6H2)] led to a monomeric complex Cu5, with the ONS-donor Schiff base acting as a bidentate ligand. The redox behavior was explored by cyclic voltammetry. The reduction/oxidation potential of Cu(II) complexes depends on the structure and conformation of the central atom in the coordination compounds. Antioxidant activities of the complexes, Cu1 - Cu5, were determined by in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radicals (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+). The dinuclear compounds Cu1-Cu4, from the concentration of 5 μM, presented a good activity in scavenging DPPH radical. In addition, most of the Cu(II) complexes showed ABTS.+ radical-scavenging activity. The monomeric complex Cu5 at all concentrations tested showed antioxidant inability. The cytotoxicity of the Cu1 and Cu3 was determined in V79 cell line by reduction of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Tamara Machado Dos Santos
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Carolina Cristovão Martins
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Danielle Tapia Bueno
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Ianka Jacondino Nunes
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Franciele Faccio Busatto
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratório de Catálise Molecular, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 90501-970, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Adriana Castro Pinheiro
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Abstract
Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents.
Collapse
|
11
|
Mandal NK, Guhathakurta B, Basu P, Pradhan AB, Purohit CS, Chowdhury S, Naskar JP. DNA and RNA binding studies on a novel bromo-bridged dimeric copper(II) complex stabilized from a Schiff base ligand. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1704276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Naba Kr Mandal
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | | - Pritha Basu
- Department of Chemistry, Sunderwati Mahila College, Bhagalpur, Bihar, India
| | | | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | | | |
Collapse
|