1
|
Silva Sousa GL, Nadur NF, de Almeida Peixoto Ferreira L, da Silva Honório T, Simon A, Cabral LM, Móra Santos ML, Andrade B, de Lima EV, Clarke JR, Castro RN, Olímpio de Moura R, Kümmerle AE. Discovery of novel thiosemicarbazone-acridine targeting butyrylcholinesterase with antioxidant, metal complexing and neuroprotector abilities as potential treatment of Alzheimer's disease: In vitro, in vivo, and in silico studies. Eur J Med Chem 2025; 281:117030. [PMID: 39531933 DOI: 10.1016/j.ejmech.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Inhibition of cholinesterases, combined with antioxidant activity, metal-chelating capacity, and neuroprotection, is recognized as an effective multitarget therapy for the treatment of Alzheimer's disease (AD). Based on our in-house thiosemicarbazone-acridine compounds, this study recognized these derivatives as possible multi-target-directed ligand (MTDL). Initial screening against cholinesterases identified CL-01, which exhibited a promising IC50 value of 0.71 μM against butyrylcholinesterase (BChE). Twelve new derivatives were designed based on CL-01 aiming to retain the BChE inhibitory activity while incorporating a MTDL profile, including antioxidant properties and metal-complexing abilities. Among the new derivatives, CL-13 maintained a good BChE inhibition (IC50 = 1.15 μM) with improved selective index against acetylcholinesterase (SI = 9.2). The acridine nucleus was important for the activity, as its saturated tetrahydroacridine analogue (TA-01) showed a decrease in cholinesterases inhibition potencies and altered the mode of inhibition, revealing for the first time distinct functional roles for the two nuclei. Moreover, CL-13 emerged as a promising lead compound, demonstrating interesting antioxidant activity (DPPH EC50 = 47.01 μM), chelating capacity of biometals involved in Aβ aggregation and/or oxidative stress, and a lack of neurotoxicity at 50 μM in SH-SY5Y cells. It also exhibited neuroprotective effects in an in vitro oxidative stress model induced by H2O2. Finally, in vivo experiments confirmed that CL-13 effectively reversed scopolamine-induced cognitive impairment, without affecting locomotor activity in the mice.
Collapse
Affiliation(s)
| | - Nathalia Fonseca Nadur
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil
| | | | - Thiago da Silva Honório
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Alice Simon
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucio Mendes Cabral
- Cell Culture Laboratory (LabCel), Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | | | - Bruna Andrade
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Emanuelle V de Lima
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | - Rosane Nora Castro
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil
| | | | - Arthur Eugen Kümmerle
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23897-000, Brazil.
| |
Collapse
|
2
|
Vadakkedathu Palakkeezhillam VN, Haribabu J, Kumar VS, Manakkadan V, Rasin P, Muena JP, Dharmasivam M, Sreekanth A. Biomolecular Interactions and Anticancer Mechanisms of Ru(II)-Arene Complexes of Cinnamaldehyde-Derived Thiosemicarbazone Ligands: Analysis Combining In Silico and In Vitro Approaches. ACS APPLIED BIO MATERIALS 2024; 7:5622-5639. [PMID: 39087675 DOI: 10.1021/acsabm.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Our study focuses on synthesizing and exploring the potential of three N-(4) substituted thiosemicarbazones derived from cinnamic aldehyde, alongside their Ru(II)-(η6 -p-cymene)/(η6-benzene) complexes. The synthesized compounds were comprehensively characterized using a range of analytical techniques, including FT-IR, UV-visible spectroscopy, NMR (1H, 13C), and HRMS. We investigated their electronic and physicochemical properties via density functional theory (DFT). X-ray crystal structures validated structural differences identified by DFT. Molecular docking predicted promising bioactivities, supported by experimental observations. Notably, docking with EGFR suggested an inhibitory potential against this cancer-related protein. Spectroscopic titrations revealed significant DNA/BSA binding affinities, particularly with DNA intercalation and BSA hydrophobic interactions. RuPCAM displayed the strongest binding affinity with DNA (Kb = 6.23 × 107 M-1) and BSA (Kb = 9.75 × 105 M-1). Assessed the cytotoxicity of the complexes on cervical cancer cells (HeLa), and breast cancer cells (MCF-7 and MDA-MB 231), revealing remarkable potency. Additionally, selectivity was assessed by examining MCF-10a normal cell lines. The active complexes were found to trigger apoptosis, a vital cellular process crucial for evaluating their potential as anticancer agents utilizing staining assays and flow cytometry analysis. Intriguingly, complexation with Ru(II)-arene precursors significantly amplified the bioactivity of thiosemicarbazones, unveiling promising avenues toward the creation of powerful anticancer agents.
Collapse
Affiliation(s)
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
| | - Vaishnu Suresh Kumar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India-620015
| | - Vipin Manakkadan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India-620015
| | - Puthiyavalappil Rasin
- Centre for Nonlinear Systems, Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Juan Pablo Muena
- Departmento de Quimica y Biologia, Facultad de Ciencias Naturales, Universidad de Atacama, Av. Copiapo 485, Copiapo 1530000, Chile
| | - Mahendiran Dharmasivam
- Department of Chemistry, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4222, Australia
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India-620015
| |
Collapse
|
3
|
Singh A, Singh K, Sharma A, Sharma S, Batra K, Joshi K, Singh B, Kaur K, Chadha R, Bedi PMS. Mechanistic insight and structure activity relationship of isatin-based derivatives in development of anti-breast cancer agents. Mol Cell Biochem 2024; 479:1165-1198. [PMID: 37329491 DOI: 10.1007/s11010-023-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sambhav Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kevin Batra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kaustubh Joshi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Brahmjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Rasin P, Basheer SM, Haribabu J, Aneesrahman K, Manakkadan V, Vadakkedathu Palakkeezhillam VN, Bhuvanesh N, Echeverria C, Santibanez JF, Sreekanth A. Host-guest interactions of coumarin-based 1,2-pyrazole using analytical and computational methods: Paper strip-based detection, live cell imaging, logic gates and keypad lock applications. Heliyon 2024; 10:e24077. [PMID: 38234888 PMCID: PMC10792585 DOI: 10.1016/j.heliyon.2024.e24077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
A novel Coumarin-based 1,2-pyrazole, HCPyTSC is synthesised and characterized. The chemosensor has been shown to have efficient colourimetric and fluorescence sensing capabilities for the quick and selective detection of fluoride and copper ions. At 376 and 430 nm, the HCPyTSC exhibits selective sensing for Cu2+ and F- ions. By examining the natural bond orbital (NBO) analysis and the potential energy curve (PES) of the ground state for the function of the C-H bond, it has been determined from the theoretical study at hand that the deprotonation was taken from the 'CH' proton of the pyrazole ring. For F- and Cu2+, the HCPyTSC detection limits were 4.62 nM and 15.36 nM, respectively. Similarly, the binding constants (Kb) for F- and Cu2+ ions in acetonitrile medium were found to be 2.06 × 105 M-1 and 1.88 × 105 M-1. Chemosensor HCPyTSC with and without F- and Cu2+ ions have an emission and absorption response that can imitate a variety of logic gates, including the AND, XOR, and OR gates. Additionally, a paper-based sensor strip with the HCPyTSC was created for use in practical, flexible F- sensing applications. The paper-based sensor was more effective in detecting F- than other anions. The effectiveness of HCPyTSC for the selective detection of F- in living cells as well as its cell permeability were examined using live-cell imaging in T24 cells.
Collapse
Affiliation(s)
- Puthiyavalappil Rasin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Sabeel M. Basheer
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
- Dr. Sabeel M Basheer, Department of Chemistry, School of Advanced Sciences, VIT-AP University, 522 237, Andhra Pradesh, India
| | - Jebiti Haribabu
- ATACAMA-OMICS, Facultad de Medicine, Universidad de, Los Carreras 1579, 1532502, Copiapo, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - K.N. Aneesrahman
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Vipin Manakkadan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | | | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Cesar Echeverria
- ATACAMA-OMICS, Facultad de Medicine, Universidad de, Los Carreras 1579, 1532502, Copiapo, Chile
| | - Juan F. Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
5
|
Rupa SA, Patwary MAM, Ghann WE, Abdullahi A, Uddin AKMR, Mahmud MM, Haque MA, Uddin J, Kazi M. Synthesis of a novel hydrazone-based compound applied as a fluorescence turn-on chemosensor for iron(iii) and a colorimetric sensor for copper(ii) with antimicrobial, DFT and molecular docking studies. RSC Adv 2023; 13:23819-23828. [PMID: 37564256 PMCID: PMC10411390 DOI: 10.1039/d3ra04364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Hydrazone-hydrazide-based linkers perform a crucial role in environmental as well as biological fields. Such linkers are employed to detect exact metal ions at a minute level; hence, numerous probes are available. Even though thiophene-based molecules have a unique position in the medicinal arena, only very few chemosensors are reported based on such a moiety. In this current work, a novel hydrazide-hydrazone-based fluorogenic molecule 5-bromo-2-hydroxy-N'-[(1E)-1-(thiophen-2-yl)ethylidene]benzohydrazide (L) has been successfully designed and synthesized. The sensing studies of L demonstrated a ratio metric as well as turn-on-enhanced fluorescence and colorimetric response toward Fe3+ and Cu2+ ions, respectively and it was observed to be insensitive toward various metal ions. The Job plots revealed that the binding stoichiometry of L and metal ions is 2 : 1. In addition, density functional theory (DFT) results strongly suggested that L can be used as a powerful colorimetric sensor for the detection of Cu2+ ions. In vitro antimicrobial activities of L were evaluated by disk diffusion and results revealed good antibacterial activities against E. coli. Further, molecular docking was executed with DNA gyrase (PDB ID: 1KZN) of E. coli and the calculated interaction energy value was found to be -7.7 kcal mol-1. Finally, molecular docking, fluorescence, colorimetry and the HOMO-LUMO energy gap of the compound can provide new insights into developing drugs and detecting metals in biomolecules.
Collapse
Affiliation(s)
| | | | - William Emmanuel Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Adams Abdullahi
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | | | - Md Mayez Mahmud
- Tokushima University, Faculty of Pharmaceutical Science Tokushima Shi 770-0026 Japan
| | - Md Aminul Haque
- Department of Chemistry, Jagannath University Dhaka-1100 Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
6
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Mandal M, Kumar VS, Bhuvanesh N, Udayabhaskar R, Sreekanth A. Synthesis and characterization of N-substituted thiosemicarbazones: DNA/BSA binding, molecular docking, anticancer activity, ADME study and computational investigations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Kumar A, Mishra R, Mazumder A, Mazumder R, Varshney S. Exploring Synthesis and Chemotherapeutic Potential of Thiosemicarbazide Analogs. Anticancer Agents Med Chem 2023; 23:60-75. [PMID: 35658880 DOI: 10.2174/1871520622666220603090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Researchers are continually finding new and more effective medications to battle the diseases. OBJECTIVE The objective of this study is to identify the emerging role of Thiosemicarbazide analogs for different types of cancer targets with a glance at different novel synthetic routes reported for their synthesis. METHODS A systematic literature review was conducted from various sources over the last 15 years with the inclusion of published research and review articles that involves the synthesis and use of thiosemicarbazide analogs for different targets of cancer. Data from the literature review for synthesis and anticancer potential for specific targets for cancer studies of thiosemicarbazide analogs are summarized in the paper. RESULTS There are several emerging studies for new synthetic routes of thiosemicarbazide derivatives with their role in various types of cancers. The main limitation is the lack of clinical trial of the key findings for the emergence of new anticancer medication with thiosemicarbazide moiety. CONCLUSION Emerging therapies exist for use of a limited number of medications for the treatment of cancer; results of the ongoing studies will provide more robust evidence in the future.
Collapse
Affiliation(s)
- Akhalesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| | - Shruti Varshney
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge park-2, Plot 19, Greater Noida, India
| |
Collapse
|
8
|
Palakkeezhillam VNV, Haribabu J, Manakkadan V, Rasin P, Varughese RE, Gayathri D, Bhuvanesh N, Echeverria C, Sreekanth A. Synthesis, spectroscopic characterizations, single crystal X-ray analysis, DFT calculations, in vitro biological evaluation and in silico evaluation studies of thiosemicarbazones based 1,3,4-thiadiazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Chaudhary U, Dawa D, Banerjee I, Sharma S, Mahiya K, Rauf A, Pokharel YR, Yadav PN. Anticancer Potency of N(4)-ring incorporated-5-methoxyisatin thiosemicarbazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Justim JDR, Bohs LMC, Martins BB, Bandeira KCT, Melo APLD, Gervini VC, Bresolin L, Godoi M, Peixoto CRDM. Electrochemical characterization of isatin-thiosemicarbazone derivatives. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mansour E, Taher HA, El-Farargy AF, Elewa SI. Synthesis of Some Novel Indoline-2,3-Dione Derivatives and the Influence of Gamma Irradiation on Their Biological Activities. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1991395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eman Mansour
- Organic Chemistry Department, Faculty of Women’s for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - H. A. Taher
- Atomic Energy Authority. Department of Drug Radiation Research, National Center for Radiation Research and Technology, Cairo, Egypt
| | - A. F. El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Safaa I. Elewa
- Organic Chemistry Department, Faculty of Women’s for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Lavanya M, Haribabu J, Ramaiah K, Suresh Yadav C, Kumar Chitumalla R, Jang J, Karvembu R, Varada Reddy A, Jagadeesh M. 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Saghatforoush L, Hosseinpour S, Moeini K, Mardani Z, Bezpalko MW, Scott Kassel W. INVESTIGATION OF THE BINDING ABILITY
OF A NEW THIOSEMICARBAZONE-BASED LIGAND
AND ITS Zn(II) COMPLEX TOWARD PROTEINS AND DNA: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kanso F, Khalil A, Noureddine H, El-Makhour Y. Therapeutic perspective of thiosemicarbazones derivatives in inflammatory pathologies: A summary of in vitro/in vivo studies. Int Immunopharmacol 2021; 96:107778. [PMID: 34162145 DOI: 10.1016/j.intimp.2021.107778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Following induction of inflammation, the nuclear factor kappa B (NF-κB) in activated macrophages induces the transcription of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase (COX), an inflammatory enzyme implicated in the synthesis of prostaglandins (PGs). The latter are involved in the transition and the maintenance of chronic inflammation underling various chronic disorders that require treatment. Concerning this, many anti-inflammatory drugs are available to treat the inflammatory disorders, but their therapeutic use is associated with a variety of side effects. Therefore, the discovery of new safer and potential anti-inflammatory drugs is necessary. In this regard, thiosemicarbazones (TSC) compounds and their metals complexes attracted high interest due to their wide range of biological activities, interestingly, the anti-inflammatory activity. They are formed by the action of thiosemicarbazide on an aldehyde or ketone, and contain a sulfur atom in place of the oxygen atom. Their ability to form a stable complex with transition metal is known to enhances the biological activity and reduces the side effects of the parent compound. Thus, this review article describes the inflammatory response mediated by NF-κB-COX-PGs and summarizes the anti-inflammatory activity of different thiosemicarbazones derivatives synthesized in research area.
Collapse
Affiliation(s)
- Fatima Kanso
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Alia Khalil
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Hiba Noureddine
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| |
Collapse
|
16
|
Wang S, Zhang X, Qi F, Huang J, Wei C, Guo Z. Crystal structure analysis of (
E
)‐
N
‐(3,5‐dimethylphenyl)‐2‐(substituted benzylidene)thiosemicarbazone: Experimental and theoretical studies. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sifan Wang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Xing Zhang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Fan Qi
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Jie Huang
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Chenli Wei
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| | - Zeyu Guo
- Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, School of Chemical Engineering Northwest University Xi'an China
| |
Collapse
|
17
|
Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e1900367. [PMID: 31960987 DOI: 10.1002/ardp.201900367] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/06/2022]
Abstract
The isatin framework is a useful template for the development of novel anticancer agents. This is exemplified by the fact that several isatin-based anticancer agents, such as semaxanib, sunitinib, nintedanib, and hesperadin, are already in use or under clinical trials for the treatment of diverse kinds of cancers. Isatin-based hybrids could be obtained by incorporating other anticancer pharmacophores into the isatin skeleton and they have the potential to overcome drug resistance with reduced side effects. Thus, isatin-based hybrids may provide attractive scaffolds for the development of novel anticancer agents. This review covers the recent advances of isatin-based hybrids with anticancer activity, covering articles published between 2001 and 2019. The anticancer activities of these molecules and the structure-activity relationships are also discussed. The purpose of this review article is to set up the direction for the design and development of isatin-based hybrids with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| | - Minfeng Zhou
- Department of General Practice, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Cheng Zeng
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| |
Collapse
|