1
|
Chakoli FA, Ghauri K, Shirini F. Designing of new functionalized imidazolium based ionic liquids attached to the antracene derivatives and investigation on the influence of intramolecular hydrogen bondings in anions on their intermolecular hydrogen bondings and some of the other properties: A DFT M06-2X-GD3 study. J Mol Graph Model 2025; 134:108885. [PMID: 39476629 DOI: 10.1016/j.jmgm.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH2, OH, OMe, H, Cl, CHO, CN and NO2) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6-311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]+ cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.
Collapse
Affiliation(s)
- Farzad Alijani Chakoli
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran
| | - Khatereh Ghauri
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran
| | - Farhad Shirini
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran.
| |
Collapse
|
2
|
Wang J, Wang Y. Strategies to Improve the Quantum Computation Accuracy for Electrochemical Windows of Ionic Liquids. J Phys Chem B 2024; 128:1943-1952. [PMID: 38354327 DOI: 10.1021/acs.jpcb.3c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Rational design of ionic liquids (ILs) with wide electrochemical windows (ECWs) for high-voltage cathodes is essential to elevating the energy density of current rechargeable batteries. It is significant to determine appropriate strategies for accurately predicting the ECWs of ILs. In this study, we compare the calculated ECWs based on three quantum methods, including the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) method, the ionization potential-electron affinity (IP-EA) method, and the thermodynamic method, under four unique combinations of simulation environments, and assess the discrepancies between the calculated and the experimental results of ECWs. For the three quantum methods, although HOMO-LUMO and IP-EA methods show limited prediction accuracy compared to the experimental values, they can qualitatively rank the anodic limits of anions and the cathodic limits of cations. For the thermodynamic method, we demonstrate that the highest accuracy can be achieved by considering the most rational redox reaction process. By varying the calculation environments, the calculated ECWs tend to be underestimated by considering separate cations and anions of ILs under gas phase, whereas they always exhibit overestimated results when calculating based on the cation-anion pairs. When the computation considers isolated ions with the solvent model plus proper thermodynamic corrections, we observe improved consistency with the experimental results. Though all methods have limitations to achieving perfect predictions of ECWs, we believe rational selection of calculation methods based on application-oriented scenarios can balance the efficiency and accuracy of the results for the development of a high-throughput and accurate database of ECWs for ILs.
Collapse
Affiliation(s)
- Jifeng Wang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Ying Wang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Shakouri S, Khalili B, Nikpasand M, Kefayati H. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study. J Mol Graph Model 2023; 125:108612. [PMID: 37657330 DOI: 10.1016/j.jmgm.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Optical and electronic characteristics of the graphene nanosheets (GNS) could be altered by some structural defects such as double-vacancy and Stone-Wales ones. The physisorption manner of [MPI][BF4], [MPT1][BF4], [MPT2][BF4], and [MPTT][BF4] ionic liquids on intact and defective GNS surfaces were investigated using M06-2X/cc-pVDZ computational method. Capability for adsorption on the DV and SW graphene surfaces by TILs is increased by about 1.0-4.3 and 0.4-2.0 kcal/mol respectively. The electrostatic potential of the GNS-DV surface is more negative than the GNS-SW one which enables it to interact with cation parts of the adsorbed TILs so extensively. The highest adsorption energy belongs to the [MPI][BF4]/GNS-DV system. Adsorption of the TILs on the GNS surfaces leads to a decrease in the energy of the LUMO molecular orbital as well as their energy gap of them. Results revealed that the electrical conductivity, as well as absorption spectra of the GNS surfaces, are affected by TILs adsorption and defect nature.
Collapse
Affiliation(s)
- Soheila Shakouri
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Nikpasand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hasan Kefayati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
4
|
New task-specific ionic liquids based on phenyl diazenyl methyl pyridinium cation: Energetic, electronic and optical properties exploration based on DFT calculations. J Mol Graph Model 2023; 118:108352. [DOI: 10.1016/j.jmgm.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
5
|
A comparative study on the physicochemical properties of the nanostructured triazolium based ionic liquids composed of [5F-PhMTZ]+ cation and various anions with their non-fluorinated cation analogues. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Dicationic ionic liquids (DILs) based on the phenyl and perfluoro-phenyl π-spacer-linked triazolium cations: a quantum chemical comparative study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
An insight into interaction of the uracil, thymine and cytosine biomolecules with methimazole anti-thyroid drug: DFT and GD3‑DFT approaches. Struct Chem 2022. [DOI: 10.1007/s11224-022-02059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Moraes AS, Pinheiro GA, Lourenço TC, Lopes MC, Quiles MG, Dias LG, Da Silva JLF. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. J Chem Inf Model 2022; 62:4702-4712. [PMID: 36122418 DOI: 10.1021/acs.jcim.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionic liquids have attracted the attention of researchers as possible electrolytes for electrochemical energy storage devices. However, their properties, such as the electrochemical stability window (ESW), ionic conductivity, and diffusivity, are influenced both by the chemical structures of cations and anions and by their combinations. Most studies in the literature focus on the understanding of common ionic liquids, and little effort has been made to find ways to improve our atomistic understanding of those systems. The goal of this paper is to explore the structural characteristics of cations and anions that form ionic liquids that can expand the HOMO/LUMO gap, a property directly linked to the ESW of the electrolyte. For that, we design a framework for randomly generating new ions by combining their fragments. Within this framework, we generate about 104 cations and 104 anions and fully optimize their structures using density functional theory. Our calculations show that aromatic cations are less stable ionic liquids than aliphatic ones, an expected result if chemical rationale is used. More importantly, we can improve the gap by adding electron-donating and electron-withdrawing functional groups to the cations and anions, respectively. The increase can be about 2 V, depending on the case. This improvement is reflected in a wider ESW.
Collapse
Affiliation(s)
- Alex S Moraes
- Chemistry Department, Central-West State University, 85040-167 Guarapuava, Paraná, Brazil
| | - Gabriel A Pinheiro
- Institute of Science and Technology, Federal University of São Paulo, 12247-014 São José dos Campos, São Paulo, Brazil
| | - Tuanan C Lourenço
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Mauro C Lopes
- Chemistry Department, Central-West State University, 85040-167 Guarapuava, Paraná, Brazil
| | - Marcos G Quiles
- Institute of Science and Technology, Federal University of São Paulo, 12247-014 São José dos Campos, São Paulo, Brazil
| | - Luis G Dias
- Chemistry Department, FFCLRP, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Chounechenan SA, Mohammadi A, Khalili B. A highly selective silver ion optical chemosensor based on isoxazolyl-azo pyrimidine: synthesis, spectroscopy, DFT calculations and applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3405-3415. [PMID: 35983903 DOI: 10.1039/d2ay00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, an isoxazolyl-azo pyrimidine optical chemosensor (PICS) was efficiently synthesized and applied for naked-eye detection of Ag+ ions in solution. The chemical formula of the PICS was recognized by UV-vis, FTIR and NMR analyses. The detection ability of PICS toward various ions was assessed. The results revealed the excellent selectivity and sensitivity of the chemosensor PICS to Ag+ ions in aqueous DMSO solutions. The PICS displayed an obvious color change from yellow to dark red in the presence of silver ions. The PICS could efficiently detect Ag+ ions over a wide pH range of 6-11, which makes it suitable for detection of Ag+ under physiological conditions. PICS also binds Ag+ ions to form a 1 : 1 stoichiometry complex (PICS-Ag+), resulting in a bathochromic shift in the absorption maximum from 372 to 410 nm. The detection limit of the probe PICS towards Ag+ was calculated to be 1.78 μM. Furthermore, the probe PICS shows excellent detection performance in the solid state, and PICS-based test strips were fabricated and applied as efficient Ag+ test kits for detection of silver ions in water samples. In addition, the sensing mechanism of PICS-Ag+ was completely evaluated using the density functional theory (DFT) calculations. Results indicated that the calculated energy gap between the HOMO and LUMO (3.41 eV) of PICS-Ag is lower than that of the free PICS (3.57 eV). This suggests that a red shift occurred upon addition of the Ag+ ion to PICS.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
10
|
Exploring of spacer fluorination effect on the characteristics and physicochemical properties of the newly designed task specific dicationic imidazolium-based ionic liquids: A quantum chemical approach. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mu X, Zhang W, Yi C, Li MJ, Fu F. Colorimetric and Photoluminescent Probes Based on Iridium(III) Complexes for Highly Selective Detection of Homocysteine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kui T, Chardin C, Rouden J, Livi S, Baudoux J. Sulfonates as Versatile Structural Counterions of Epoxidized Salts. CHEMSUSCHEM 2022; 15:e202200198. [PMID: 35499286 DOI: 10.1002/cssc.202200198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids have recently emerged as monomers to synthesize multifunctional polymeric materials. Among such species, ionic epoxy-based networks represent promising but underdeveloped materials that are hindered by tricky access to the functionalized ionic liquid monomers. To date, the reported epoxidized imidazolium salts have focused on highly toxic epichlorohydrin. This study concerns flexible and efficient methods to synthesize versatile building blocks with sulfonates as valuable anions. The judicious combination of an aliphatic or aromatic sulfonate with an imidazolium leads to new epoxidized salts with high structural variability and good chemical and thermal stability (>300 °C).
Collapse
Affiliation(s)
- Tony Kui
- Normandie Université, LCMT UMR 6507, ENSICAEN, CNRS, 6 bd. Du Maréchal Juin, 14050, Caen, France
| | - Charline Chardin
- Normandie Université, LCMT UMR 6507, ENSICAEN, CNRS, 6 bd. Du Maréchal Juin, 14050, Caen, France
| | - Jacques Rouden
- Normandie Université, LCMT UMR 6507, ENSICAEN, CNRS, 6 bd. Du Maréchal Juin, 14050, Caen, France
| | - Sébastien Livi
- Université de Lyon, INSA Lyon, U NMR CNRS 5223, IMP Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Jérôme Baudoux
- Normandie Université, LCMT UMR 6507, ENSICAEN, CNRS, 6 bd. Du Maréchal Juin, 14050, Caen, France
| |
Collapse
|
13
|
Khalili B, Moradpour M. Fluorination effects on the physicochemical properties of the nanostructured tunable ionic liquids: [5F-PhMeTAZ]+ or [5H-PhMeTAZ]+ which one is the better choice? J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Khalili B, Mamaghani M, Bazdid-Vahdati N. Structural design and physicochemical specifications exploring of the new di-cationic ionic liquids (D-ILs) composed of para-xylyl linked N-Methylimidazolium cation and various anions: a full M06–2X computational study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-021-02862-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Talaei R, Khalili B, Mokhtary M. Modulation of opto-electronic properties of the functionalized hexagonal boron nitride nanosheets with tunable aryl alkyl ionic liquids (TAAILs): Defect based analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|