1
|
Shalabi K, Abd El-Lateef HM, Hammouda MM, Abdelhamid AA. Green Synthesizing and Corrosion Inhibition Characteristics of Azo Compounds on Carbon Steel under Sweet Conditions: Experimental and Theoretical Approaches. ACS OMEGA 2024; 9:18932-18945. [PMID: 38708197 PMCID: PMC11064054 DOI: 10.1021/acsomega.3c09072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The deterioration of carbon steel in saline solutions enriched with carbon dioxide represents a significant challenge within the oil and gas industry. So, this study focuses on the design and structural analysis of four azo derivatives: 4-(2-quinolinylazo)-catechol (AZN-1), 4-(4-phenoxyphenylazo)-1-naphthol (AZN-2), 4-(4-pyridylazo)-1-naphthol (AZN-3), and 4-(2-pyridylazo)-1-naphthol (AZN-4), and their first application as effective corrosion inhibitors for carbon steel in a carbon dioxide saturated 3.5% sodium chloride solution. Spectroscopic methods were used to characterize the structural configurations of these compounds. The corrosion protection properties of these compounds on carbon steel in a carbon dioxide saturated 3.5% sodium chloride solution (under sweet conditions) were investigated using Tafel polarization (PDP), electrochemical impedance spectroscopy (EIS), and field emission-scanning electron microscopy (FE-SEM) studies. The results indicate that the inhibition efficiency increases as the concentration of the inhibitors increases. There is a notable agreement between the results obtained from the PDP and EIS measurements, supporting the findings. Moreover, the results displayed that these compounds had significant corrosion protection capabilities at low concentrations, ranging from 91.0 to 98.3% at an additive concentration of 5 × 10-4 M. The PDP profiles showed that these compounds acted as mixed inhibitors, and their adsorption behavior followed the Langmuir isotherm model. Besides, EIS results corroborate the adsorption of AZN compounds through a reduction in double-layer capacitance (Cdl) alongside an augmentation in polarization resistance (Rp) after the addition of AZN compounds into the corrosive solution. Field emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the formation of a protective layer on the surface of carbon steel when these inhibitors were applied. In addition, computational calculations and Monte Carlo simulations were performed to support the experimental observations, gain insights into the adsorption properties, and elucidate the corrosion inhibition mechanisms of these compounds.
Collapse
Affiliation(s)
- Kamal Shalabi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Hany M. Abd El-Lateef
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box
400, Al-Ahsa 31982, Saudi Arabia
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed M. Hammouda
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Antar A. Abdelhamid
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Chemistry
Department, Faculty of Science, Al-Baha
University, Al-Baha 1988, Saudi Arabia
| |
Collapse
|
2
|
Subbiah K, Lee HS, Al-Hadeethi MR, Park T, Lgaz H. Unraveling the anti-corrosion mechanisms of a novel hydrazone derivative on steel in contaminated concrete pore solutions: An integrated study. J Adv Res 2024; 58:211-228. [PMID: 37634628 PMCID: PMC10982867 DOI: 10.1016/j.jare.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Corrosion-induced deterioration of infrastructure is a growing global concern. The development and application of corrosion inhibitors are one of the most effective approaches to protect steel rebar from corrosion. Hence, this study focuses on a novel hydrazone derivative, (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)aceto-hydrazide (HIND), and its potential application to mitigate corrosion in steel rebar exposed to chloride-contaminated concrete pore solutions (ClSCPS). OBJECTIVES The research aims to evaluate the anti-corrosion capabilities of HIND on steel rebar within a simulated corrosive environment, focusing on the mechanisms of its inhibitory effect. METHODS The corrosion of steel rebar exposed to the ClSCPS was studied through weight loss and electrochemical methods. The surface morphology of steel rebar surface was characterized by FE-SEM-EDS, AFM; oxidation states of the steel rebar and crystal structures were examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. Further, experimental findings were complemented by theoretical studies using self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. The performance of HIND was monitored at an optimal concentration over a period of 30 days. RESULTS The results indicated a significant reduction in steel rebar corrosion upon introducing HIND. The inhibitor molecules adhered to the steel surface, preventing further deterioration and achieving an inhibition efficiency of 88.4% at 0.5 mmol/L concentration. The surface morphology analysis confirmed the positive effect of HIND on the rebar surface, showing a decrease in the surface roughness of the steel rebar from 183.5 in uninhibited to 50 nm in inhibited solutions. Furthermore, SCC-DFTB simulations revealed the presence of coordination between iron atoms and HIND active sites. CONCLUSION The findings demonstrate the potential of HIND as an effective anti-corrosion agent in chloride-contaminated environments. Its primary adsorption mechanism involves charge transfer from the inhibitor molecules to iron atoms. Therefore, applying HIND could be an effective strategy to address corrosion-related challenges in reinforced infrastructure.
Collapse
Affiliation(s)
- Karthick Subbiah
- Department of Architectural Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
| | - Mustafa R Al-Hadeethi
- Department of Chemistry, College of Education, University of Kirkuk, Kirkuk 36001, Iraq
| | - Taejoon Park
- Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hassane Lgaz
- Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
3
|
Abd-elmaksoud GA, Abusaif MS, Ammar YA, Al-Sharbasy S, Migahed MA. Construction, Characterization, DFT Computational Study, and Evaluation the Performance of Some New N-Amino Pyridinone Schiff Base Catalyzed with Ceric(IV) Ammonium Nitrate (CAN) as Corrosion Inhibitors in Some Petroleum Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-08073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/15/2023] [Indexed: 09/02/2023]
Abstract
AbstractIn this paper, two novel organic inhibitors, TAP-TPP and TAP-CEQ, were prepared via Schiff base condensation as a green chemistry methodology using an eco-friendly catalyst, ceric ammonium nitrate, with a high yield (87% and 91%), and characterized via elemental analysis, FTIR, 1H, and 13C NMR spectroscopic analysis tools. Weight loss assessment was utilized as a chemical testing method, and the maximum inhibition efficiency of TAP-TPP and TAP-CEQ is 89.4% and 91.8%, respectively. PDP and EIS were electrochemical measures to determine the efficacy of both inhibitors as anticorrosion for carbon steel alloys in 2 M HCl aggressive media. The collected electrochemical results demonstrated that both inhibitors behaved as excellent anticorrosion agents for metallic constructions. According to the potentiodynamic polarization (PDP) analysis, these organic inhibitors worked as mixed-type inhibitors. The adsorption isotherm revealed that undertaken compounds obeyed Langmuir adsorption isotherm with the free energies of adsorption of ranged from ΔG = − 34.29 to − 34.63 kJ Mol−1. Also, electrochemical impedance spectroscopy (EIS) data confirmed that the values charge transfer resistance (Rct) was increased by increasing the concentration of the injected inhibitor molecules. In contrast, the electrochemical double layer (Cdl) was dramatically decreased. The work was supported by two-surface analysis methods such as SEM and EDX. For more details, the values of percentage inhibition efficiency can be ordered as follows: TAP-CEQ > TAP-TPP. Finally, a suitable inhibition mechanism and theoretical studies including EHOMO, ELUMO, diploe moment (µ), and electrophilicity index (ω) were assumed and discussed in detailed.
Collapse
|
4
|
Caihong Y, Singh A, Ansari K, Ali IH, Kumar R. Novel nitrogen based heterocyclic compound as Q235 steel corrosion inhibitor in 15% HCl under dynamic condition: A detailed experimental and surface analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Abouchane M, Dkhireche N, Rbaa M, Benhiba F, Ouakki M, Galai M, Lakhrissi B, Zarrouk A, Ebn Touhami M. Insight into the corrosion inhibition performance of two quinoline-3-carboxylate derivatives as highly efficient inhibitors for mild steel in acidic medium: Experimental and theoretical evaluations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Feng L, Zhang S, Hao L, Du H, Pan R, Huang G, Liu H. Cucumber ( Cucumis sativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution: Electrochemical, Functional and Molecular Analysis. Molecules 2022; 27:3826. [PMID: 35744959 PMCID: PMC9227098 DOI: 10.3390/molecules27123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
An extract of cucumber leaves (ECSL) was prepared as a green corrosion inhibitor for carbon steel. Its carbon steel corrosion inhibition performance against 0.5 mol L-1 H2SO4 was investigated using electrochemical methods and scanning electron microscopy (SEM). Its composition was analyzed by gas chromatography and mass spectroscopy (GC-MS). Quantum chemical calculations and molecular dynamics simulations (MDS) were conducted to elucidate the adsorption mechanism of the inhibitor molecules on the carbon steel surface. The results indicated that the inhibition efficiency increases with its increasing concentration. The extract acted as a mixed type corrosion inhibitor, and its inhibition properties were ascribed to the geometric coverage effect induced by its adsorption on the metal surface in accordance with Langmuir's law. The active components in the extract were identified as mainly organic compounds with functional groups such as aromatic moieties and heteroatoms. The inhibition activities of ECSL are delivered through the ability of the active components to adsorb on the metal surface through their functional groups to form a protective layer which hinders the contact of aggressive substances with carbon steel and thus suppresses its corrosion. This research provides an important reference for the design of green corrosion inhibitors based on plant waste materials.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Shanshan Zhang
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Long Hao
- CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Hongchen Du
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Rongkai Pan
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Guofu Huang
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Haijian Liu
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| |
Collapse
|
7
|
Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Anticorrosive Effect of Halogenated Aniline Enaminoesters on Carbon Steel in HCl. INTERNATIONAL JOURNAL OF CORROSION 2022. [DOI: 10.1155/2022/7218063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four enaminoesters derived from halogenated aniline, with potential anticorrosion activity, were synthesized and tested against carbon steel AISI 1020 in acid medium using 1.0 mol L-1 HCl. The synthesis was demonstrated through the reaction of ethyl acetoacetate with four different amines, in the presence of glacial acetic acid and molecular sieve, using ethanol as solvent for 24 h. The evaluation of the anticorrosive activity was performed using the gravimetric technique and electrochemical methods, such as electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization (PP). Results indicated that the F-EN (Ethyl (2Z)-3-[(4-fluoro-phenyl)-amino]-but-2-enoate) inhibitor had higher corrosion inhibition efficiency, of 98% by mass loss, and 85% by electrochemical techniques. Adsorption obeyed the Langmuir isotherm, thus suggesting that the inhibitors form a monolayer film in metal surface. These results also contributed to the calculations of the physicochemical parameters of
,
, and
, which confirmed the corrosion inhibition when compared to the absence of the inhibitors.
Collapse
|
9
|
Abdallah YM, El-Gammal OA, Abd El-Lateef HM, Shalabi K. Synthesis and characterization of novel dicarbohydrazide derivatives with electrochemical and theoretical approaches as potential corrosion inhibitors for N80 steel in a 3.5% NaCl solution. RSC Adv 2022; 12:14665-14685. [PMID: 35702199 PMCID: PMC9109716 DOI: 10.1039/d2ra01751b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Two novel ethanoanthracene-11,12-dicarbohydrazide derivatives N'11,N'12-bis((Z)-4-hydroxybenzylidene)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarbohydrazide (H2HEH) and N'11,N'12-bis((Z)-4-methoxybenzylidene)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarbohydrazide (H2MEH) were synthesized and characterized by FT-IR spectroscopy, electronic spectra, and NMR spectroscopy. These two derivatives as novel anticorrosion inhibitors for N80 steel in a 3.5% NaCl solution were studied using electrochemical techniques including potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM). Corrosion parameters and adsorption isotherms were determined from current-potential diagrams (i.e., Tafel slopes). The impact of temperature and inhibitor concentration on the corrosion performance was studied using the PP method. The PP results suggested mixed-type inhibitors. The inhibition prohibition increased and decreased when the dose was increased and the temperature was increased, respectively. The adsorption of the hydrazides on the N80 exterior followed the Langmuir isotherm. The maximum inhibition proficiency for H2MEH and H2HEH were 93.3% and 92.2%, respectively, at 1 × 10-4 M. Moreover, the investigated surface was studied with the synthesized compounds through X-ray photoelectron spectroscopy (XPS) to confirm the construction of an adsorbed shielding barrier. An evident association was established between the corrosion inhibition proficiency and theoretical variables acquired using the density functional theory (DFT) method and Monte Carlo (MC) simulations. The experimental data were in good agreement with the theoretical results.
Collapse
Affiliation(s)
- Y M Abdallah
- Department of Dental Biomaterials, Faculty of Oral and Dental Medicine, Delta University for Science and Technology Gamasa Egypt
| | - Ola A El-Gammal
- Chemistry Department, Faculty of Science, Mansoura University P.O. Box 70 Mansoura Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University Sohag 82524 Egypt
| | - K Shalabi
- Chemistry Department, Faculty of Science, Mansoura University P.O. Box 70 Mansoura Egypt
| |
Collapse
|
10
|
Ismail MA, Shaban MM, Abdel-Latif E, Abdelhamed FH, Migahed MA, El-Haddad MN, Abousalem AS. Novel cationic aryl bithiophene/terthiophene derivatives as corrosion inhibitors by chemical, electrochemical and surface investigations. Sci Rep 2022; 12:3192. [PMID: 35210457 PMCID: PMC8873503 DOI: 10.1038/s41598-022-06863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Two novel bithienyl fluorobenzamidine derivatives namely, 4-([2,2':5',2''-terthiophen]-5-yl)-2-fluorobenzamidine hydrochloride salt (MA-1615), 5'-(4-amidino-3-fluorophenyl)-[2,2'-bithiophene]-5-carboxamidine dihydrochloride salt (MA-1740) were synthesized, characterized and their corrosion inhibition properties were evaluated by electrochemical methods for carbon steel (C-steel) in 1 M HCl. Experimental investigations revealed that the inhibition effectiveness of the investigated inhibitors (INHs) by the Tafel polarization method followed the order: MA-1740 (96.9%) > MA-1615 (95.6%), demonstrating higher efficiency than inhibitors of similar structure reported in the literature. The investigated bithiophene derivatives exhibit mixed-type corrosion inhibition characteristics by blocking the active sites on the surface of C-steel. EIS study revealed that the INHs behave as interface-type corrosion inhibitors. UV-Visible spectrometric measurements confirmed a complex formation between the Fe2+ cation released during the corrosion reactions and inhibitor molecules.
Collapse
Affiliation(s)
- Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahmoud M Shaban
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma H Abdelhamed
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A Migahed
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Mahmoud N El-Haddad
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf S Abousalem
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
- Operation Department, Quality Control Laboratory, Jotun, Egypt.
| |
Collapse
|
11
|
Sharma S, Ganjoo R, Thakur A, Kumar A. Electrochemical characterization and surface morphology techniques for corrosion inhibition—a review. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2039913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Zhang X, Zhang M, Zhang Z, Li Q, Lv R, Wu W. Bis-Mannich bases as effective corrosion inhibitors for N80 steel in 15% HCl medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Lgaz H, Lee HS. Facile preparation of new hydrazone compounds and their application for long-term corrosion inhibition of N80 steel in 15% HCl: An experimental study combined with DFTB calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Synergistic Effect of Imidazoline Derivative and Benzimidazole as Corrosion Inhibitors for Q235 Steel: An Electrochemical, XPS, FT-IR and MD Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Gouda M, Khalaf MM, Shalabi K, Al-Omair MA, El-Lateef HMA. Synthesis and Characterization of Zn-Organic Frameworks Containing Chitosan as a Low-Cost Inhibitor for Sulfuric-Acid-Induced Steel Corrosion: Practical and Computational Exploration. Polymers (Basel) 2022; 14:228. [PMID: 35054635 PMCID: PMC8779413 DOI: 10.3390/polym14020228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, a Zn-benzenetricarboxylic acid (Zn@H3BTC) organic framework coated with a dispersed layer of chitosan (CH/Zn@H3BTC) was synthesized using a solvothermal approach. The synthesized CH/Zn@H3BTC was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), thermal gravimetric analysis (TGA), and Brunauer, Emmett, and Teller (BET) surface area. The microscopic observation and the analysis of the BET surface area of CH/Zn@H3BTC nanocomposites indicated that chitosan plays an important role in controlling the surface morphology and surface properties of the Zn@H3BTC. The obtained findings showed that the surface area and particle size diameter were in the range of 80 m2 g-1 and 800 nm, respectively. The corrosion protection characteristics of the CH/Zn@H3BTC composite in comparison to pristine chitosan on duplex steel in 2.0 M H2SO4 medium determined by electrochemical (E vs. time, PDP, and EIS) approaches exhibited that the entire charge transfer resistance of the chitosan- and CH/Zn@H3BTC-composite-protected films on the duplex steel substrate was comparatively large, at 252.4 and 364.8 Ω cm2 with protection capacities of 94.1% and 97.8%, respectively, in comparison to the unprotected metal surface (Rp = 20.6 Ω cm2), indicating the films efficiently protected the metal from corrosion. After dipping the uninhabited and protected systems, the surface topographies of the duplex steel were inspected by FESEM. We found the adsorption of the CH/Zn@H3BTC composite on the metal interface obeys the model of the Langmuir isotherm. The CH/Zn@H3BTC composite revealed outstanding adsorption on the metal interface as established by MD simulations and DFT calculations. Consequently, we found that the designed CH/Zn@H3BTC composite shows potential as an applicant inhibitor for steel protection.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Saudi Arabia; (M.M.K.); (M.A.A.-O.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Saudi Arabia; (M.M.K.); (M.A.A.-O.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Kamal Shalabi
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 11432, Egypt;
| | - Mohammed A. Al-Omair
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Saudi Arabia; (M.M.K.); (M.A.A.-O.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Saudi Arabia; (M.M.K.); (M.A.A.-O.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
16
|
Biological macromolecule as an eco-friendly high temperature corrosion inhibitor for P110 steel under sweet environment in NACE brine ID196: Experimental and computational approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Li D, Zhao X, Liu Z, Liu H, Fan B, Yang B, Zheng X, Li W, Zou H. Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater. ACS OMEGA 2021; 6:29965-29981. [PMID: 34778668 PMCID: PMC8582072 DOI: 10.1021/acsomega.1c04500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 05/08/2023]
Abstract
Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artificial seawater (ASW) was clarified by gravimetric measurements, electrochemical evaluations, surface analyses, quantum chemical calculations under a dominant solvent model, and molecular dynamics (MD) simulations. The results of weight loss revealed that CYPE strongly inhibited the corrosion of copper in ASW, and the elevating temperature boosted the anticorrosion efficacy of CYPE. The inhibition efficiency could attain 96.33% with 900 mg/L CYPE in ASW at 298 K due to effective adsorption. CYPE simultaneously suppressed the anodic and cathodic reactions for copper in ASW, which could be categorized as the mixed-type corrosion inhibitor with the predominant anodic effect. Similar electrochemical kinetics was evidenced by electrochemical frequency modulation (EFM). Electrochemical impedance spectroscopy (EIS) indicated that CYPE prominently increased the charge-transfer resistance at the copper/electrolyte interface without altering the corrosion mechanism. Extending the immersion time was also conducive for CYPE to further minimize the corrosion of copper in ASW, which was demonstrated by the time-course polarization, EIS, and EFM tests. Owing to the adsorption of CYPE, the copper surface was well-protected and showed reduced wettability and limited variation of roughness. From the outcomes of quantum chemical calculations, global and local reactive descriptors of DOG implied the cross-linked deposition of actually formed dioscin on the copper surface; otherwise, those of BTS-I/-III showed the propensity for parallel adsorption, which could chemically anchor on the voids uncovered by dioscin and thereby synergistically inhibit the corrosion process. The adsorption orientations of DOG, BTS-I, and BTS-III were also consolidated by MD simulations. The findings of this study might be beneficial to inspire the development of eco-friendly corrosion inhibitors from plant wastes for copper in marine environments.
Collapse
Affiliation(s)
- Dejin Li
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoqi Zhao
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zining Liu
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hao Liu
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Baomin Fan
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xingwen Zheng
- Key
Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wenzhuo Li
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huijian Zou
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
18
|
Sadeghpour M, Olyaei A. Recent advances in the synthesis of bis(pyrazolyl)methanes and their applications. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ardakani EK, Kowsari E, Ehsani A, Ramakrishna S. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Chauhan DS, Verma C, Quraishi M. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129374] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Corrosion behaviors of Q235 carbon steel under imidazoline derivatives as corrosion inhibitors: Experimental and computational investigations. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
22
|
Selim MS, El-Safty SA, Abbas MA, Shenashen MA. Facile design of graphene oxide-ZnO nanorod-based ternary nanocomposite as a superhydrophobic and corrosion-barrier coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125793] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations. COATINGS 2020. [DOI: 10.3390/coatings10090811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been substantial research undertaken on the role of green synthesized corrosion inhibitors as a substantial approach to inhibit the corrosion of metals and their alloys in acidic environments. Herein, electrochemical studies, surface characterization, and theoretical modeling were adopted to investigate the corrosion inhibition proprieties of novel synthesized quinoxaline derivatives bearing 8-Hydroxyquinoline, namely 1-((8-hydroxyquinolin-5-yl) methyl)-3,6-dimethylquinoxalin-2(1H)-one (Q1) and 1-((8-hydroxyquinolin-5-yl)methyl) quinoxalin-2(1H)-one (Q2) on mild steel corrosion in 1 mol/L HCl solution. The principal finding of this research was that both inhibitors acted as good corrosion inhibitors with Q1 having the highest performance (96% at 5 × 10−3 mol/L). Electrochemical results obtained via potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques demonstrated that quinoxaline compounds belonged to mixed-type inhibitors; their presence significantly increased the polarization resistance, preventing simultaneously anodic and cathodic reactions. Further, experimental results provided preliminary insights about the interactions mode between studied molecules and the mild steel surface, which followed the Langmuir adsorption model, and physical and chemical interactions assisted their inhibition mechanism. Besides, SEM analyses confirmed the existence of protective film on the metal surface after the addition of 5 × 10−3 mol/L of quinoxalines. In addition, the temperature and immersion time effects on inhibition performances of quinoxalines were investigated to evaluate their performances in different operating conditions. Besides, Density Functional Theory (DFT) and molecular dynamics (MD) simulations were carried out to explore the most reactive sites of quinoxaline inhibitors and their interaction mechanism. Theoretical results revealed that the inhibitor molecule with additional electron-donating functional group strongly interacted with the steel surface.
Collapse
|