1
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2024:10.1007/s11030-024-10858-0. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Belay Y, Muller A, Mokoena FS, Adeyinka AS, Motadi LR, Oyebamiji AK. 1,2,3-triazole and chiral Schiff base hybrids as potential anticancer agents: DFT, molecular docking and ADME studies. Sci Rep 2024; 14:6951. [PMID: 38521876 PMCID: PMC10960833 DOI: 10.1038/s41598-024-57689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
A series of novel 1,2,3-triazole and chiral Schiff base hybrids 2-6 were synthesized by Schiff base condensation reaction from pre-prepared parent component of the hybrids (1,2,3-triazole 1) and series of primary chiral amines and their chemical structure were confirmed using NMR and FTIR spectroscopies, and CHN elemental analysis. Compounds 1-6 were evaluated for their anticancer activity against two cancer PC3 (prostate) and A375 (skin) and MRC-5 (healthy) cell lines by Almar Blue assay method. The compounds exhibited significant cytotoxicity against the tested cancer cell lines. Among the tested compounds 3 and 6 showed very good activity for the inhibition of the cancer cell lines and low toxicity for the healthy cell lines. All the compounds exhibited high binding affinity for Androgen receptor modulators (PDB ID: 5t8e) and Human MIA (PDB ID: 1i1j) inhibitors compared to the reference anticancer drug (cisplatin). Structure activity relationships (SARs) of the tested compounds is in good agreement with DFT and molecular docking studies. The compounds exhibited desirable physicochemical properties for drug likeness.
Collapse
Affiliation(s)
- Yonas Belay
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.
| | - Alfred Muller
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Fanikie S Mokoena
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Abel K Oyebamiji
- Industrial Chemistry Programme, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| |
Collapse
|
3
|
Chudasama DD, Rajput CV, Patel MS, Parekh JN, Patel HC, Chikhaliya NP, Puerta A, Padrón JM, Ram KR. Microwave-induced one-pot synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole hybrids as antiproliferative agents and density functional theory study. Arch Pharm (Weinheim) 2024; 357:e2300632. [PMID: 38150663 DOI: 10.1002/ardp.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 μM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.
Collapse
Affiliation(s)
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
4
|
Kumar A, Lal K, Murtaza M, Jaglan S, Rohila Y, Singh P, Singh MB, Kumari K. Antimicrobial, antibiofilm, docking, DFT and molecular dynamics studies on click-derived isatin-thiosemicarbazone-1,2,3-triazoles. J Biomol Struct Dyn 2023; 42:9919-9938. [PMID: 37695672 DOI: 10.1080/07391102.2023.2253912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
In an effort to develop new antimicrobial and antibiofilm agents, we have designed and synthesized a novel class of isatin-thiosemicarbazone-1,2,3-triazoles through the CuAAC approach. All the synthesized hybrids were characterized by several spectral techniques such as FTIR, 1H NMR, 13C NMR, 2D NMR and HRMS. All the derivatives were evaluated for their antimicrobial and antibiofilm efficacy towards various microbial species. Triazole hybrid 8d exhibited the highest efficacy towards E. coli (MIC = 0.0067 µmol/mL) and S. aureus (MIC = 0.0067 µmol/mL), whereas, compounds 8b, 8c, 8d, 8e, 9a and terminal alkyne (10) significantly inhibited biofilm formation against S. aureus, B. subtilis and E. coli. To find out the structure-activity relationship and binding interactions of synthesized hybrids with enzymes 1KZN and 5TZ1, molecular docking for all the synthesized hybrids was carried out. DFT calculations for all hybrids and the molecular dynamics studies for compounds 9e and 9f were also performed to support the biological behavior of these hybrids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Yajat Rohila
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Arafa FM, Said H, Osman D, Rezki N, Aouad MR, Hagar M, Osman M, Elwakil BH, Jaremko M, Tolba MM. Nanoformulation-Based 1,2,3-Triazole Sulfonamides for Anti- Toxoplasma In Vitro Study. Trop Med Infect Dis 2023; 8:401. [PMID: 37624339 PMCID: PMC10460005 DOI: 10.3390/tropicalmed8080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasma gondii is deemed a successful parasite worldwide with a wide range of hosts. Currently, a combination of pyrimethamine and sulfadiazine serves as the first-line treatment; however, these drugs have serious adverse effects. Therefore, it is imperative to focus on new therapies that produce the desired effect with the lowest possible dose. The designation and synthesis of sulfonamide-1,2,3-triazole hybrids (3a-c) were performed to create hybrid frameworks. The newly synthesized compounds were loaded on chitosan nanoparticles (CNPs) to form nanoformulations (3a.CNP, 3b.CNP, 3c.CNP) for further in vitro investigation as an anti-Toxoplasma treatment. The current study demonstrated that all examined compounds were active against T. gondii in vitro relative to the control drug, sulfadiazine. 3c.CNP showed the best impact against T. gondii with the lowest IC50 value of 3.64 µg/mL. Using light microscopy, it was found that Vero cells treated with the three nanoformulae showed remarkable morphological improvement, and tachyzoites were rarely seen in the treated cells. Moreover, scanning and transmission electron microscopic studies confirmed the efficacy of the prepared nanoformulae on the parasites. All of them caused parasite ultrastructural damage and altered morphology, suggesting a cytopathic effect and hence confirming their promising anti-Toxoplasma activity.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 21577, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Doaa Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21526, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
6
|
Yadav A, Kaushik C, Kumar M. Hydrazones tethered disubstituted 1,2,3-triazoles: design, synthesis, antitubercular and antimicrobial evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
8
|
Yadav A, Kaushik CP. Synthesis and antibacterial evaluation of sulfonamide bridged disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Archna Yadav
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
9
|
Phenylhydrazone linked 1,2,3-triazole hybrids: synthesis, antimicrobial evaluation and docking studies as dual inhibitors of DNA gyrase and lanosterol 14-α demethylase. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Rani V, Tyagi A, Kohli N, Singh BP, Sangeetha KG, Kumar A. Structural, Spectroscopic, and Molecular Docking Analysis of Benzophenone N(4)-methyl-N(4)-phenyl Thiosemicarbazone Using Density Functional Theory. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Varsha Rani
- Department of Physics, Chaudhary Charan Singh University, Meerut, India
| | - Akansha Tyagi
- Department of Physics, Chaudhary Charan Singh University, Meerut, India
| | - Navneeta Kohli
- Department of Physics, Chaudhary Charan Singh University, Meerut, India
| | - Beer Pal Singh
- Department of Physics, Chaudhary Charan Singh University, Meerut, India
| | - K. G. Sangeetha
- Department of Chemistry, The Zamorin’s Guruvayurappan College, Kozhikode, India
| | - Anuj Kumar
- Department of Physics, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
11
|
Yadav M, Lal K, Kumar A, Kumar A, Kumar D. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Synthesis, Characterization and Nanoformulation of Novel Sulfonamide-1,2,3-triazole Molecular Conjugates as Potent Antiparasitic Agents. Int J Mol Sci 2022; 23:ijms23084241. [PMID: 35457059 PMCID: PMC9025934 DOI: 10.3390/ijms23084241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.
Collapse
|
13
|
Rupa SA, Moni MR, Patwary MAM, Mahmud MM, Haque MA, Uddin J, Abedin SMT. Synthesis of Novel Tritopic Hydrazone Ligands: Spectroscopy, Biological Activity, DFT, and Molecular Docking Studies. Molecules 2022; 27:1656. [PMID: 35268756 PMCID: PMC8911750 DOI: 10.3390/molecules27051656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research among many others due to their unique and versatile functionality and ease of strategic ligand design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands, N’2, N’6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N’2, N’6-bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and 2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The optimized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p) showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO) calculations were also conducted to find the HOMO, LUMO, and HOMO−LUMO gaps of the two synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains. In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosinase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12 mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and −8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.
Collapse
Affiliation(s)
- Sharmin Akther Rupa
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh; (S.A.R.); (M.R.M.)
| | - Md. Rassel Moni
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh; (S.A.R.); (M.R.M.)
| | | | - Md. Mayez Mahmud
- Faculty of Pharmaceutical Science, Tokushima University, Tokushima Shi 770-0026, Japan;
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh;
| | - Jamal Uddin
- Department of Natural Sciences, Center for Nanotechnology, Coppin State University, Baltimore, MD 21216, USA
| | | |
Collapse
|
14
|
Tai XS, Wang LH, Xia YP. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3
O:S:S)sodium(I)], C10H14N3O5SNa. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
C10H14N3O5SNa, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 6.7015(5) Å, b = 7.5656(5) Å, c = 14.1332(8) Å, β = 93.159(5)°, V = 654.71(8) Å3, Z = 2, R
gt
(F) = 0.0357, wR
ref
(F
2) = 0.0872, T = 273 K.
Collapse
Affiliation(s)
- Xi-Shi Tai
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Li-Hua Wang
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Yu-Pei Xia
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| |
Collapse
|
15
|
|
16
|
Yıldız M, Bingul M, Zorlu Y, Saglam MF, Boga M, Temel M, Koca MS, Kandemir H, Sengul IF. Dimethoxyindoles based thiosemicarbazones as multi-target agents; synthesis, crystal interactions, biological activity and molecular modeling. Bioorg Chem 2022; 120:105647. [PMID: 35121556 DOI: 10.1016/j.bioorg.2022.105647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is known as one of the most devastating neurodegenerative disease diagnosed for the old-aged people and cholinesterase inhibitors (ChEI) can be used as an effective palliative treatment for AD. A range of novel monomeric and dimeric indole based thiosemicarbazone derivatives 17-28 was synthesized in order to target cholinesterases (ChE). Biological importance of the targeted compounds 17-28 was investigated by employing the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes along with three different antioxidant property determination assays, namely DPPH free radical scavenging, ABTS cationic radical decolarization, and CUPRAC cupric reducing antioxidant capacity. The compounds 18 and 19 displayed the best inhibitor activity against BChE with IC50 values of 7.42 and 1.95 μM, respectively. The antioxidant potentials were found to be moderate for DPPH and ABTS assays and the compounds 28 and 18 were the most potent candidates for both antioxidant assays. Cupric reducing capacity was the most promising assay and the compounds 25, 26 and 28 provided better inhibition values than all the standards. Further binding mode and affinity studies performed by molecular docking and molecular dynamics simulations. Accordingly, the compound 19 is the most plausible candidate that can compete with galantamine (GNT), a common pharmaceutics targeting both cholinesterase enzymes.
Collapse
Affiliation(s)
- Minhal Yıldız
- Department of Chemistry, Faculty of Art and Science, Tekirdag Namık Kemal University, Turkey
| | - Murat Bingul
- Department of Basic Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır 21280, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet F Saglam
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır 21280, Turkey
| | - Mutesir Temel
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet Serdar Koca
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Hakan Kandemir
- Department of Chemistry, Faculty of Art and Science, Tekirdag Namık Kemal University, Turkey
| | - Ibrahim F Sengul
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
17
|
Göktürk T, Hökelek T, Güp R. Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Ethyl 4-(4-(2-Bromoethyl)-1H-1,2,3-triazol-1-yl)benzoate. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521060109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Alkhatib FM, Farghaly TA, Harras MF, El-Ghamry HA. Copper(II) complexes based on 1,3,4-thiadiazolethiosemicarbazone NNS donor ligands: synthesis, molecular structure, DNA binding and in silico molecular docking approach. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatmah M. Alkhatib
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Marwa F. Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hoda A. El-Ghamry
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Synthesis, antifungal studies, molecular docking, ADME and DNA interaction studies of 4-hydroxyphenyl benzothiazole linked 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Kumar L, Lal K, Kumar A, Kumar A. Synthesis, antimicrobial evaluation and docking studies of oxazolone-1,2,3-triazole-amide hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04588-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Kaushik CP, Sangwan J. Synthesis, characterization and antibacterial activity of the thioether linked 1,2,3-triazoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1974040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
22
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Gultekin E, Bekircan O, Kolcuoğlu Y, Akdemir A. Synthesis of new 1,2,4-triazole-(thio)semicarbazide hybrid molecules: Their tyrosinase inhibitor activities and molecular docking analysis. Arch Pharm (Weinheim) 2021; 354:e2100058. [PMID: 33900640 DOI: 10.1002/ardp.202100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/23/2023]
Abstract
Tyrosinase inhibition is very important in controlling melanin synthesis. If melanin synthesis is not controlled in metabolism, an unwanted increase in melanin synthesis occurs. As melanin plays a role in the formation of skin color, its unusual levels cause some skin disorders such as pregnancy scars, age spots, and especially skin cancer (melanoma). However, the tyrosinase activity is also related to Parkinson's disease and some neurodegenerative diseases. For all these reasons, the medicinal as well as the cosmetic industries focus on research on tyrosinase inhibitors for the treatment of skin disorders and some neurodegenerative diseases. In this study, 32 new 1,2,4-triazole-(thio)semicarbazide hybrid molecules (6a-p and 7a-p) were synthesized, starting from 4-amino-1-pentyl-3-phenyl-1H-1,2,4-triazole-5(4H)-one. These compounds were evaluated for their inhibitory activity against mushroom tyrosinase. The results indicated that 6h, 6m, 6n, and 6p exhibited the most effective inhibitory activity, with IC50 values of 0.00162 ± 0.0109, 0.00166 ± 0.0217, 0.00165 ± 0.019, and 0.00197 ± 0.0063 μM, respectively, compared with kojic acid as the reference drug (IC50 = 14.09 ± 0.02 μM). Also, molecular docking analyses were performed to suggest possible binding poses for the ligands. As a result, derivatives 6h, 6m, 6n, and 6p can be used as promising tyrosinase inhibitor candidates in the medicinal, cosmetics, or food industries.
Collapse
Affiliation(s)
- Ergün Gultekin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Yakup Kolcuoğlu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
24
|
Aouad MR, Khan DJO, Said MA, Al‐Kaff NS, Rezki N, Ali AA, Bouqellah N, Hagar M. Novel 1,2,3-Triazole Derivatives as Potential Inhibitors against Covid-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect 2021; 6:3468-3486. [PMID: 34230893 PMCID: PMC8250976 DOI: 10.1002/slct.202100522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The highly contagious nature of Covid-19 attracted us to this challenging area of research, mainly because the disease is spreading very fast and until now, no effective method of a safe treatment or a vaccine is developed. A library of novel 1,2,3-triazoles based 1,2,4-triazole, 1,3,4-oxadiazole and/or 1,3,4-thiadiazole scaffolds were designed and successfully synthesized. Different spectroscopic tools efficiently characterized all the newly synthesized hybrid molecules. An interesting finding is that some of the newly designed compounds revealed two isomeric forms. The ratio is affected by the size of the attached group as well as the type of the heteroatom forming the side ring attached to the central 1,2,3-triazole ring. The experimental spectroscopic data is in agreement with the DFT calculations at B3LYP 6-31G (d,p) with regard to the geometrical conformation of the prepared compounds. The DFT results revealed that the stability of one isomeric form over the other in the range of 0.057-0.161 Kcal mol-1. A docking study was performed using PyRx and AutoDockVina to investigate the activity of the prepared 1,2,3-triazoles as antiviral agents. Bond affinity scores of the 1,2,3-triazole derivatives were detected in the range of -6.0 to -8.8 kcal/mol showing binding to the active sites of the 6LU7 protease and hence could be anticipated to inhibit the activity of the enzyme. Verification of the docking results was performed using the Mpro alignment of coronaviruses substrate-binding pockets of COVID-19 against the ligands. As per these results, it can be proposed that the title hybrid molecules are acceptable candidates against COVID-19 for possible medicinal agents.
Collapse
Affiliation(s)
- Mohamed Reda Aouad
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Daoud J. O. Khan
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Musa A. Said
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nadia S. Al‐Kaff
- Department of BiologyCollege of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Adeeb A. Ali
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nahla Bouqellah
- Department of BiologyCollege of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Mohamed Hagar
- Department of ChemistryCollege of Sciences, YanbuTaibah UniversityYanbu30799Saudi Arabia
- Department of ChemistryFaculty of ScienceAlexandria UniversityAlexandria21321Egypt
| |
Collapse
|
25
|
Nehra N, Kumar Tittal R, Ghule VD, Kumar N, Kumar Paul A, Lal K, Kumar A. CuAAC Mediated Synthesis of 2‐HBT Linked Bioactive 1,2,3‐Triazole Hybrids: Investigations through Fluorescence, DNA Binding, Molecular Docking, ADME Predictions and DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202003919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Ram Kumar Tittal
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Vikas D. Ghule
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Nikhil Kumar
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Avijit Kumar Paul
- Department of Chemistry National Institute of Technology, Kurukshetra Haryana 136119 India
| | - Kashmiri Lal
- Department of Chemistry GJUS&T, Hisar Haryana 125001 India
| | - Ashwini Kumar
- Department of of Pharmaceutical Sciences GJUS&T, Hisar Haryana 125001 India
| |
Collapse
|
26
|
Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Naveen, Kumar Tittal R, Vikas GD, Rani P, Lal K, Kumar A. Synthesis, Antimicrobial Activity, Molecular Docking and DFT Study: Aryl‐Carbamic Acid 1‐Benzyl‐1
H
‐[1,2,3]Triazol‐4‐ylmethyl Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202001547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naveen
- Department of ChemistryNational Institute of Technology, Kurukshetra Haryana 136119 India
| | - Ram Kumar Tittal
- Department of ChemistryNational Institute of Technology, Kurukshetra Haryana 136119 India
| | - Ghule D. Vikas
- Department of ChemistryNational Institute of Technology, Kurukshetra Haryana 136119 India
| | - Poonam Rani
- Department of ChemistryGJUS&T, Hisar Haryana 125001 India
| | - Kashmiri Lal
- Department of ChemistryGJUS&T, Hisar Haryana 125001 India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T Hisar Haryana 12500 India
| |
Collapse
|