Duan WL, Ma C, Luan J, Ding F, Yan F, Zhang L, Li WZ. Fabrication of metal-organic salts with heterogeneous conformations of a ligand as dual-functional urease and nitrification inhibitors.
Dalton Trans 2023;
52:14329-14337. [PMID:
37540017 DOI:
10.1039/d3dt01375h]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urease inhibitors (UIs) and nitrification inhibitors (NIs) can greatly reduce nitrogen loss in agriculture soil. However, design and synthesis of an efficient and environmentally friendly dual-functional inhibitor is still a great challenge. Herein, four metal-organic salts (MOSs) based on heterogeneous conformations of the ligand N1,N1,N2,N2-tetrakis(2-fluorobenzyl)ethane-1,2-diamine (L), namely, [2HL]2+·[MCl4]2- (M = Cu, Zn, Cd, and Co), have been synthesized by the "second sphere" coordination method and structurally characterized in detail. Single crystal X-ray diffraction (SCXRD) analyses reveal that the four MOSs are 0D supramolecular structures containing [2HL]2+ and [MCl4]2-, which are connected through non-covalent bonds. Furthermore, the urease and nitrification inhibitory activities of MOSs are evaluated, showing excellent nitrification inhibitory activity with the nitrification inhibitory rate as high as 70.57% on the 28th day in soil cultivation experiment. In particular, MOS 1 shows significant urease inhibitory activity with half maximal inhibitory concentration (IC50) values of 0.89 ± 0.01 μM (0.5 h) and 1.87 ± 0.01 μM (3 h), which can serve as a dual-functional inhibitor.
Collapse