1
|
Cheng Y, Gao X, Li S, Wang L, Li W, Cao X. Formation and non-covalent interactions of binary and ternary complexes based on β-casein, Lentinus edodes mycelia polysaccharide, and taxifolin. Int J Biol Macromol 2024; 269:132212. [PMID: 38729495 DOI: 10.1016/j.ijbiomac.2024.132212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Polyphenols, polysaccharides, and proteins are essential nutrients and functional substances present in food, and when present together these components often interact with each other to influence their structure and function. Proteins and polysaccharides are also excellent carrier materials for polyphenols. In this context, this study investigated the non-covalent interactions between taxifolin (TAX), Lentinus edodes mycelia polysaccharide (LMP), and β-casein (β-CN). β-CN and LMP spontaneously formed nanocomplexes by hydrogen bonds and van der Waals forces. The quenching constant and binding constant were (1.94 ± 0.02) × 1013 L mol-1 s-1 and (3.22 ± 0.17) × 105 L mol-1 at 298 K, respectively. The altered conformation of β-CN, resulting from the binding to LMP, affected the interaction with TAX. LMP significantly enhanced the binding affinity of TAX and β-CN, but did not change the static quenching binding mode. The binding constant for β-CN-TAX was (3.96 ± 0.09) × 1013 L mol-1, and that for the interaction between TAX and β-CN-LMP was (32.06 ± 0.05) × 1013 L mol-1. In summary, β-CN-LMP nanocomplexes have great potential as a nanocarrier for polyphenols, and this study provides a theoretical foundation for the rational design of non-covalent complexes involving LMP and β-CN, both in binary and ternary configurations.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xue Gao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Siqi Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Le Wang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Wenkai Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Hiremath KB, Shivashankar M, Chandrasekaran N. Multispectroscopic Studies on HSA Interaction, DFT Calculations, Molecular Docking, and Antimicrobial Activities of Imine‐ Functionalized Tris(hydroxymethyl)aminomethane Derivatives. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 10/26/2023]
Abstract
AbstractFollowing recent work on new Tris hydroxymethyl aminomethane Schiff base derivatives were synthesized and characterized by using NMR (1H, 13C, and depth), FT‐IR, and Mass spectroscopy. The crystal structure of STB has been determined by X‐ray diffraction analysis. The binding interaction of the 3 chemically synthesized molecules with human serum albumin has been examined under the pH=7.40 through UV‐visible absorption and fluorescence spectroscopy analysis. The result obtained from the fluorescence experiment (1014) suggests a static mechanism of quenching. By utilizing fluorescence spectroscopy to determine the binding constant (Kb=106), it was determined which ligands have the highest affinity for HSA and that these ligands had changed the structure of HSA. Through hydrophobic interactions, the ligands bind to HSA on site I (subdomain II), according to thermodynamic parameters like enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo). The result of 3D fluorescence spectra also showed that albumin conformational changes were brought on by these ligands. The results of the experiments were supported by DFT and molecular docking of ligands with HSA. Escherichia coli, Stap. aureus, Aspergillus niger, and Aspergillus flavus were tested for antimicrobial activity against the synthesized compounds respectively.
Collapse
|
3
|
Su HQ, Zhang RF, Guo Q, Wang J, Li QL, Du XM, Ru J, Zhang QF, Ma CL. Five organotin complexes derived from hydroxycinnamic acid ligands: Synthesis, structure, in vitro cytostatic activity and binding interaction with BSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Cu(II) complex with auxin (3-indoleacetic acid) and an aromatic planar ligand: synthesis, crystal structure, biomolecular interactions and radical scavenging activity. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:771-785. [PMID: 33929571 DOI: 10.1007/s00249-021-01525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
A novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, ESI-TOF, FTIR and single-crystal X-ray diffraction techniques. Interaction of the complex with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33258 displacement assay. The interactions between the complex and bovine serum albumin (BSA) were investigated by electronic absorption and fluorescence spectroscopy methods. The experimental results indicate that the fluorescence quenching mechanism between the complex and BSA is a static quenching process. The Stern-Volmer constants, binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance between the complex and BSA was calculated according to Förster non-radiation energy transfer theory (FRET). The effect of the complex on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimensional (3D) fluorescence spectroscopy. Furthermore, the oxygen radical scavenging activity of the complex was determined in terms of IC50, using the DPPH and H2O2 method, to show that it particularly enables electron loss from radical species. This study highlights the importance of indole and moieties in the development of antioxidant agents. A potent drug candidate novel water soluble ternary copper(II) complex,-[Cu2(phen)2(3-IAA)2(H2O)] (ClO4)2·H2O-(phen: 1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, FTIR, ESI-MS and single-crystal X-ray diffraction techniques. The complex has been tested for in vitro biomacromolecular interactions by spectroscopic methods. Furthermore, radical scavenging activities of the complex were also investigated.
Collapse
|
5
|
Gu J, Zheng S, Huang X, He Q, Sun T. Exploring the mode of binding between butylated hydroxyanisole with bovine serum albumin: Multispectroscopic and molecular docking study. Food Chem 2021; 357:129771. [PMID: 33894572 DOI: 10.1016/j.foodchem.2021.129771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Considering the harm of BHA on humans, thorough research of the effect of BHA on the structure of serum albumin is necessary. The binding mechanisms of BHA with bovine serum albumin (BSA) and the effects of other three food additives (butylated hydroxytoluene, benzoic acid and citric acid) on BHA-BSA system were researched by multispectroscopy and molecular docking. The fluorescence quenching experiment results showed that the fluorescence quenching mechanism of BSA by BHA was static quenching. The binding constant ((5.70 ± 0.38) × 103 M-1 at 298 K) and thermodynamic parameters (ΔH = 110.8 ± 2.91 kJ·mol-1 and ΔS = 443.3 ± 9.30 J·mol-1·K-1) indicated that BHA and BSA formed a relatively stable complex through hydrophobic interaction. Three-dimensional fluorescence spectra confirmed the conformation changes of BSA due to the binding of BHA. Site marker competitive experiments and molecular docking proved that BHA could bind BSA into site I in subdomain IIA. The results of molecular docking showed that BHA formed hydrophobic interactions with amino acid residues (Ala290, Leu237, Leu259, Ile263 and Ile289). The presence of other food additives weakened the binding of BHA to BSA.
Collapse
Affiliation(s)
- Jiali Gu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China; College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Siyao Zheng
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Xiyao Huang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Qian He
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, PR China
| | - Ting Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
6
|
İnci D, Aydın R, Vatan Ö, Zorlu Y. A potent drug candidature of Cu(II) pyrazino[2,3-f][1,10]phenanthroline complexes with bioactive ligands: synthesis, crystal structures, biomolecular interactions, radical scavenging and cytotoxicities. J Biomol Struct Dyn 2020; 39:7194-7212. [PMID: 32811370 DOI: 10.1080/07391102.2020.1808070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A novel ternary copper(II) complexes, - [Cu(py-phen)(asn)(NO3)(H2O)] (1) and [Cu(py-phen)(trp)(H2O)]NO3 (2)- (py-phen: pyrazino[2,3-f][1,10]phenanthroline, asn: asparagine, trp: tryptophan), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of the complexes 1 and 2 with CT-DNA has been investigated by absorption spectral titration, EB and Hoechst 33258 displacement assay. The interaction between the complexes 1 and 2 and BSA was investigated by electronic absorption and fluorescence spectroscopy methods. The experimental outcomes indicate that the fluorescence quenching mechanism between the complexes 1 and 2 and BSA is a static quenching process. The Stern-Volmer constants, binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance between the complexes 1 and 2 and BSA was calculated according to FRET. The effect of the complexes 1 and 2 on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimensional (3D) fluorescence spectroscopy. Radical scavenging activity of the complex was determined in terms of EC50, using the DPPH and H2O2 method. The anticancer activities of the complexes 1 and 2 were investigated using an XTT assay against three cancer cell lines (MCF-7, Caco-2 and A549) and non-tumor cell line (BEAS-2B). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duygu İnci
- Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, Kocaeli, Turkey
| | - Rahmiye Aydın
- Department of Chemistry, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Özgür Vatan
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|