1
|
Priya B, Chhabria D, Mahesh Dhongdi J, Kirubakaran S. A novel approach to investigate the combinatorial effects of TLK1 (Tousled-Like Kinase1) inhibitors with Temozolomide for glioblastoma therapy. Bioorg Chem 2024; 151:107643. [PMID: 39029318 DOI: 10.1016/j.bioorg.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive, incurable brain tumor with poor prognosis and limited treatment options. Temozolomide (TMZ) is the standard chemotherapeutic treatment for GBM, but its efficacy has drawn strong criticism from clinicians due to short survival gains and frequent relapses. One critical limitation of TMZ therapy is the hyperactivation of DNA repair pathways, which over time neutralizes the cytotoxic effects of TMZ, thus highlighting the urgent need for new treatment approaches. Addressing this, our study explores the therapeutic potential of in-house-designed phenothiazine-based Tousled-like kinase-1 (TLK1) inhibitors for GBM treatment. TLK1, overexpressed in GBM, plays a role in DNA repair. Phenothiazines are known to cross the blood-brain barrier (BBB). Among all molecules, J54 was identified as a potential lead molecule with improved cytotoxicity. In the context of O6-methylguanine-DNA methyltransferase (MGMT)-deficient GBM cells, the combined administration of phenothiazines and TMZ exhibited a collective reduction in clonogenic growth, coupled with anti-migratory and anti-invasion effects. Conversely, in MGMT-proficient cells, phenothiazine monotherapy alone showed reduced clonogenic growth, along with anti-migratory and anti-invasion effects. Notably, a synergistic increase in γH2AX levels and concurrent attenuation of DNA repair upon combinatorial exposure to TMZ and J54 were observed, implying increased cytotoxicity due to sustained DNA strand breaks. Overall, this study provides new insights into TLK1 inhibition for GBM therapy. Collectively, these findings indicate that TLK1 is one of the upregulated kinases in GBM and phenothiazine-based TLK1 inhibitors could be a promising treatment option for GBM patients.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Dimple Chhabria
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Janhvi Mahesh Dhongdi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India.
| |
Collapse
|
2
|
Johnson D, Hussain J, Bhoir S, Chandrasekaran V, Sahrawat P, Hans T, Khalil MI, De Benedetti A, Thiruvenkatam V, Kirubakaran S. Synthesis, kinetics and cellular studies of new phenothiazine analogs as potent human-TLK inhibitors. Org Biomol Chem 2023; 21:1980-1991. [PMID: 36785915 DOI: 10.1039/d2ob02191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alterations in the expression patterns of protein kinases often implicate human cancer initiation and progression. Human tousled-like kinases (TLKs), both TLK1/1B and TLK2, are evolutionary kinases found in cell signaling pathways and are involved in DNA repair, replication, and chromosomal integrity. Several reports have demonstrated the numerous roles of TLK1B in the development and progression of cancer via its interactions with different partners, and this direct association has made them viable molecular targets for cancer therapy. Previous studies have shown phenothiazines to be potent TLK1B inhibitors. Herein, we report the design and synthesis of a class of phenothiazine molecules and their biological inhibitory effect on hTLK1B/KD through in vitro kinase assays, cellular assays, and in silico studies. We identified a few inhibitors with better inhibition and physio-chemical properties than the reported TLK1B inhibitors using a recombinant human tousled-like kinase 1B-kinase domain (hTLK1B-KD). Very interestingly, inhibitory activity with LNCap cells was found to be on the sub-nanomolar level. Our attempts to study the newly designed phenothiazine analogs, as well as generate a stable catalytically active hTLK1B-KD in high yield, represent a fundamental step towards the structure-based design of future TLK-specific inhibitors.
Collapse
Affiliation(s)
- Delna Johnson
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Javeena Hussain
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Siddhant Bhoir
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Vaishali Chandrasekaran
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Parul Sahrawat
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Tanya Hans
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| | - Sivapriya Kirubakaran
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Al-Otaibi JS, Mary YS, Mary S, Trivedi R, Chakraborty B, Yadav R, Celik I, Soman S. DFT and MD investigations of the biomolecules of phenothiazine derivatives: interactions with gold and water molecules and investigations in search of effective drug for SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35470781 DOI: 10.1080/07391102.2022.2068649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Theoretical analyses of two phenothiazine derivatives, 10-[3-(dimethylamino)-2-methylpropyl]phenothiazine-2-carbonitrile (CYM) and 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol (PAZ) are reported using density functional theory (DFT) and molecular dynamics (MD) simulations. Spectroscopic studies, different electronic and chemical parameters are predicted. Red and yellow in electrostatic potential plot is in rings and oxygen atom in PAZ and C≡N and rings in CYM are sensitive to nucleophilic attacks. The blue in hydrogen atoms refer to electrophilic attack in both PAZ and CYM. Stability of the protein-ligand complex formed with these derivatives and angiotensin-converting enzyme 2 (ACE2) was investigated using MD simulation. Radius of gyration of C-alpha atom of 6VW1 displayed the conformational convergence toward a compact structure leading to stable 6VW1-ligand complex which are also in agreement with root mean square fluctuation (RMSF) values. Localized area predicts reactive sites for Au and H2O molecules interaction with these compounds for further practical applications. Charge density is localized on both molecules and also tries to move toward Au-Au dimer and water molecule and such they are expected to contribute to the sensing performance. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Ravi Trivedi
- Department of Physics, Indian Institute of Technology, Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Sreejit Soman
- Stemskills Research and Education Lab Private Limited, Faridabad, Hariyana, India
| |
Collapse
|
4
|
Hussain J, Sahrawat P, Dubey P, Kirubakaran S, Thiruvenkatam V. Exploring packing features of N-substituted acridone derivatives: Synthesis and X-ray crystallography studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|