1
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
2
|
Aktaş E, Saygılı İ, Kahveci E, Tekbıyık Z, Özgentürk NÖ. Bioinformatic investigation of Nipah virus surface protein mutations: Molecular docking with Ephrin B2 receptor, molecular dynamics simulation, and structural impact analysis. Microbiol Immunol 2023; 67:501-513. [PMID: 37812043 DOI: 10.1111/1348-0421.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
The SARS-CoV-2 outbreak resulted in significant challenges and loss of life. The Nipah virus, known for its high infectivity and severity, was designated an emergency concern by the World Health Organization. To understand its mutations, the Nipah virus proteins were analyzed extensively, with a focus on the essential G and F proteins responsible for viral entry into host cells. Our bioinformatics analysis unveiled multiple mutations, including simultaneous mutations within a single sequence. Notably, the G273S mutation in the F protein was identified as a potential cause of structural damage, which carries significant implications for vaccine development. Comparing the docking scores of G and F proteins with the Ephrin B2 receptor, it was found that the Y228H mutation in the G protein and the D252G mutation in the F protein likely affect virus entry into host cells. Moreover, our investigation into stability and deformability highlighted the impact of the Y228H mutation in the G protein complex. Molecular dynamics simulations revealed increased flexibility and conformational changes in the G protein complex with the Y228H mutation compared with the known complex. Furthermore, evaluating the root mean square deviation variation demonstrated greater dynamic behavior in the G protein complex and the Ephrin B2 receptor complex. This comprehensive study provides valuable insights into Nipah virus mutations, their significance for vaccine development, and the importance of understanding protein complex behavior in drug discovery. The identified mutations, especially G273S and Y228H, hold crucial implications for future research and potential interventions against the Nipah virus.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - İrem Saygılı
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Elif Kahveci
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Zeynep Tekbıyık
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Maliszewski D, Demirel R, Wróbel A, Baradyn M, Ratkiewicz A, Drozdowska D. s-Triazine Derivatives Functionalized with Alkylating 2-Chloroethylamine Fragments as Promising Antimicrobial Agents: Inhibition of Bacterial DNA Gyrases, Molecular Docking Studies, and Antibacterial and Antifungal Activity. Pharmaceuticals (Basel) 2023; 16:1248. [PMID: 37765056 PMCID: PMC10650753 DOI: 10.3390/ph16091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The spectrum of biological properties of s-triazine derivatives is broad and includes anti-microbial, anti-cancer, and anti-neurodegenerative activities, among others. The s-triazine molecule, due to the possibility of substituting three substituents, offers many opportunities to obtain hybrid compounds with a wide variety of activities. A group of 1,3,5 triazine derivatives containing a dipeptide, 2-ethylpiperazine, and a methoxy group as substituents was screened for their antimicrobial activity. An in vitro study was conducted on pathogenic bacteria (E. coli, S. aureus, B. subtilis, and M. luteus), yeasts (C. albicans), and filamentous fungi (A. fumigatus, A. flavus, F. solani, and P. citrinum) via microdilution in broth, and the results were compared with antibacterial (Streptomycin) and antifungal (Ketoconazole and Nystatin) antibiotics. Several s-triazine analogues have minimal inhibitory concentrations lower than the standard. To confirm the inhibitory potential of the most active compounds against gyrases E. coli and S. aureus, a bacterial gyrases inhibition assay, and molecular docking studies were performed. The most active s-triazine derivatives contained the -NH-Trp(Boc)-AlaOMe, -NH-Asp(OtBu)-AlaOMe, and -NH-PheOMe moieties in their structures.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| | - Rasime Demirel
- Department of Biology, Eskisehir Technical University, Eskişehir 26555, Turkey;
| | - Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| | - Maciej Baradyn
- Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Artur Ratkiewicz
- Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| |
Collapse
|
4
|
Dai R, Wei X, Li T, Lee J, Gao J, Chen Y, Su G, Zhao Y. Synthesis and Antitumor Activity of Panaxadiol Pyrazole and Isooxazole Derivatives. Chem Biodivers 2023; 20:e202300507. [PMID: 37279052 DOI: 10.1002/cbdv.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
In this study, we designed and synthesized 19 nitrogen-containing heterocyclic derivatives of panaxadiol (PD). We first reported the antiproliferative activity of these compounds against four different tumor cells. The results of the MTT assay showed that the PD pyrazole derivative (compound 12b) had the best antitumor activity and could significantly inhibit the proliferation of four tested tumor cells. For A549 cells, the IC50 value was as low as 13.44±1.23 μM. Western blot analysis showed that the PD pyrazole derivative was a bifunctional regulator. On the one hand, it can down-regulate the expression of HIF-1α by acting on PI3 K/AKT signaling pathway in A549 cells. On the other hand, it can induce the decrease of CDKs protein family and E2F1 protein expression levels, thus playing a crucial role in cell cycle arrest. According to the results of molecular docking, we found that multiple hydrogen bonds were formed between the PD pyrazole derivative and two related proteins, and the docking score of the derivative was also significantly higher than that of the crude drug. In summary, the study of the PD pyrazole derivative laid a foundation for the development of ginsenoside as an antitumor agent.
Collapse
Affiliation(s)
- Rongke Dai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xinrui Wei
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jiaming Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
5
|
Bharath kumar M, Hariprasad V, Joshi SD, Jayaprakash GK, L. P, Pani AS, Babu DD, Naik P. Bis(azolyl)pyridine‐2,6‐dicarboxamide Derivatives: Synthesis, Bioassay Analysis and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
|
7
|
Gholivand K, Koupaei MHH, Mohammadpanah F, Roohzadeh R, Fallah N, Pooyan M, Satari M, Pirastehfar F. A novel phospho triazine compound serving as an anticancer and antibacterial agent: An experimental-computational investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shawish I, Barakat A, Aldalbahi A, Malebari AM, Nafie MS, Bekhit AA, Albohy A, Khan A, Ul-Haq Z, Haukka M, de la Torre BG, Albericio F, El-Faham A. Synthesis and Antiproliferative Activity of a New Series of Mono- and Bis(dimethylpyrazolyl)- s-triazine Derivatives Targeting EGFR/PI3K/AKT/mTOR Signaling Cascades. ACS OMEGA 2022; 7:24858-24870. [PMID: 35874229 PMCID: PMC9301957 DOI: 10.1021/acsomega.2c03079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we synthesized a newseries of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives. The synthetic methodology involved the reaction of different mono- and dihydrazinyl-s-triazine derivatives with acetylacetone in the presence of triethylamine to produce the corresponding target products in high yield and purity. The antiproliferative activity of the novel mono- and bis(dimethylpyrazolyl)-s-triazine derivatives was studied against three cancer cell lines, namely, MCF-7, HCT-116, and HepG2. N-(4-Bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine 4f, N-(4-chlorophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine 5c, and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine 5d showed promising activity against these cancer cells: 4f [(IC50 = 4.53 ± 0.30 μM (MCF-7); 0.50 ± 0.080 μM (HCT-116); and 3.01 ± 0.49 μM (HepG2)]; 5d [(IC50 = 3.66 ± 0.96 μM (HCT-116); and 5.42 ± 0.82 μM (HepG2)]; and 5c [(IC50 = 2.29 ± 0.92 μM (MCF-7)]. Molecular docking studies revealed good binding affinity with the receptor targeting EGFR/PI3K/AKT/mTOR signaling cascades. Compound 4f exhibited potent EGFR inhibitory activity with an IC50 value of 61 nM compared to that of Tamoxifen (IC50 value of 69 nM), with EGFR inhibition of 83 and 84%, respectively, at a concentration of 10 μM. Interestingly, 4f showed remarkable PI3K/AKT/mTOR inhibitory activity with 0.18-, 0.27-, and 0.39-fold decrease in their concentration (reduction in controls from 6.64, 45.39, and 86.39 ng/mL to 1.24, 12.35, and 34.36 ng/mL, respectively). Hence, the synthetic 1,3,5-triazine derivative 4f exhibited promising antiproliferative activity in HCT-116 cells through apoptosis induction by targeting the EGFR and its downstream pathway.
Collapse
Affiliation(s)
- Ihab Shawish
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Aldalbahi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Azizah M. Malebari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed S. Nafie
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Adnan A. Bekhit
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy
Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain
| | - Amgad Albohy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
- The Center
for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Alamgir Khan
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research
Institute of Chemistry, International Center for Chemical and Biological
Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South
Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| | - Ayman El-Faham
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
9
|
Noureen S, Ali S, Iqbal J, Zia MA, Hussain T. Synthesis, Comparative Theoretical and Experimental Characterization of Some New 1,3,5 triazine Based Heterocyclic Compounds and in vitro Evaluation as Promising Biologically Active Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 2022. [DOI: 10.1007/s11224-022-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jangir N, Poonam, Dhadda S, Jangid DK. Recent advances in the synthesis of five‐ and six‐membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nidhi Jangir
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Poonam
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Surbhi Dhadda
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| | - Dinesh K. Jangid
- Department of Chemistry (Centre of Advanced Study) University of Rajasthan JLN Marg Jaipur Rajasthan India- 302004
| |
Collapse
|
12
|
Molecular design, molecular docking and ADMET study of cyclic sulfonamide derivatives as SARS-CoV-2 inhibitors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8479971 DOI: 10.1016/j.cjac.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to spread globally with more than 172 million confirmed cases and 3.57 million deaths. Cyclic sulfonamide derivative is identified as a successful compound and showed anti-SARS-CoV-2 activity. In this study, the structure and activity relationships of 35 cyclic sulfonamide compound inhibitors are investigated by using three-dimensional quantitative structure-activity relationship (3D-QSAR) and holographic quantitative structure-activity relationship (HQSAR). Two models with good statistical parameters and reliable predictive ability are obtained from the same training set, including Topomer CoMFA (q2= 0.623,r2= 0.938,rpred2= 0.893) model and HQSAR (q2= 0.704,r2= 0.958,rpred2=0.779) model. The established models not only have good stability, but also show good external prediction ability for the test set. The contour and color code maps of the models provide a lot of useful information for determining the structural requirements which might affect the activity; this information paves the way for the design of four novel cyclic sulfonamide compounds, and predictes their pIC50 values. We explore the interaction between the newly designed molecule and SARS-CoV-2 3CLpro by molecular docking. The docking results show that GLU166, GLN192, ALA194, and VAL186 may be the potential active residues of the SARS-CoV-2 inhibitor evaluated in this study. Finally, the oral bioavailability and toxicity of the newly designed cyclic sulfonamide compounds are evaluated and the results show that the four newly designed cyclic sulfonamide compounds have major ADMET properties and can be used as reliable inhibitors against COVID-19. These results may provide useful insights for the design of effective SARS-CoV-2 inhibitors.
Collapse
|
13
|
Huo M, Ma L, Liu G. Exploring the mechanism of Yixinyin for myocardial infarction by weighted co-expression network and molecular docking. Sci Rep 2021; 11:22567. [PMID: 34799616 PMCID: PMC8604969 DOI: 10.1038/s41598-021-01691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Yixinyin, the traditional Chinese medicine, has the effects of replenishing righteous qi, and promoting blood circulation to eliminate blood stagnation. It is often used to treat patients with acute myocardial infarction (MI). The purpose of our study is to explore the key components and targets of Yixinyin in the treatment of MI. In this study, we analyzed gene expression data and clinical information from 248 samples of MI patients with the GSE34198, GSE29111 and GSE66360 data sets. By constructing a weighted gene co-expression network, gene modules related to myocardial infarction are obtained. These modules can be mapped in Yixinyin PPI network. By integrating differential genes of healthy/MI and unstable angina/MI, key targets of Yixinyin for the treatment of myocardial infarction were screened. We validated the key objectives with external data sets. GSEA analysis is used to identify the biological processes involved in key targets. Through molecular docking screening, active components that can combine with key targets in Yixinyin were obtained. In the treatment of myocardial infarction, we have obtained key targets of Yixinyin, which are ALDH2, C5AR1, FOS, IL1B, TLR2, TXNRD1. External data sets prove that they behave differently in the healthy and MI (P < 0.05). GSEA enrichment analysis revealed that they are mainly involved in pathways associated with myocardial infarction, such as viral myocarditis, VEGF signaling pathway and type I diabetes mellitus. The docking results showed that the components that can be combined with key targets in YixinYin are Supraene, Prostaglandin B1, isomucronulatol-7,2'-di-O-glucosiole, angusifolin B, Linolenic acid ethyl ester, and Mandenol. For that matter, they may be active ingredients of Yixinyin in treating MI. These findings provide a basis for the preliminary research of myocardial infarction therapy in traditional Chinese medicine and provide ideas for the design of related drugs.
Collapse
Affiliation(s)
- Mengqi Huo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lina Ma
- Rehabilitation Teaching and Research Section, Henan Medical College, Zhengzhou, China
| | - Guoguo Liu
- Department of Cardiology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, China.
| |
Collapse
|
14
|
Tong JB, Luo D, Xu HY, Bian S, Zhang X, Xiao XC, Wang J. A computational approach for designing novel SARS-CoV-2 M pro inhibitors: combined QSAR, molecular docking, and molecular dynamics simulation techniques. NEW J CHEM 2021. [DOI: 10.1039/d1nj02127c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The promising compound T21 for treating COVID-19 at the active site of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Jian-Bo Tong
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Ding Luo
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Hai-Yin Xu
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Shuai Bian
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xing Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xue-Chun Xiao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Jie Wang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|