Fath MK, Khalili S, Boojar MMA, Hashemi ZS, Zarei M. Clodronic Acid has Strong Inhibitory Interactions with the Urease Enzyme of
Helicobacter pylori: Computer-aided Design and
in vitro Confirmation.
Curr Comput Aided Drug Des 2024;
20:1100-1112. [PMID:
37957909 DOI:
10.2174/0115734099271837231026064439]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND
Helicobacter pylori (HP) infection could lead to various gastrointestinal diseases. Urease is the most important virulence factor of HP. It protects the bacterium against gastric acid.
OBJECTIVE
Therefore, we aimed to design urease inhibitors as drugs against HP infection.
METHODS
The DrugBank-approved library was assigned with 3D conformations and the structure of the urease was prepared. Using a re-docking strategy, the proper settings were determined for docking by PyRx and GOLD software. Virtual screening was performed to select the best inhibitory drugs based on binding affinity, FitnessScore, and binding orientation to critical amino acids of the active site. The best inhibitory drug was then evaluated by IC50 and the diameter of the zone of inhibition for bacterial growth.
RESULTS
The structures of prepared drugs were screened against urease structure using the determined settings. Clodronic acid was determined to be the best-identified drug, due to higher PyRx binding energy, better GOLD FitnessScore, and interaction with critical amino acids of urease. In vitro results were also in line with the computational data. IC50 values of Clodronic acid and Acetohydroxamic Acid (AHA) were 29.78 ± 1.13 and 47.29 ± 2.06 μg/ml, respectively. Diameters of the zones of inhibition were 18 and 15 mm for Clodronic acid and AHA, respectively.
CONCLUSION
Clodronic acid has better HP urease inhibition potential than AHA. Given its approved status, the development of a repurposed drug based on Clodronic acid would require less time and cost. Further, in vivo studies would unveil the efficacy of Clodronic acid as a urease inhibitor.
Collapse