1
|
Taghavi Fardood S, Moradnia F, Aminabhavi TM. Green synthesis of novel Zn 0.5Ni 0.5FeCrO 4 spinel magnetic nanoparticles: Photodegradation of 4-nitrophenol and aniline under visible light irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124534. [PMID: 39004207 DOI: 10.1016/j.envpol.2024.124534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.
Collapse
Affiliation(s)
| | - Farzaneh Moradnia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315516, Iran
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Roostaie A, Haddad R, Haji Abdolrasouli M. PLA/CS-ZnO bionanocomposite for rapid catalytic reduction of nitrophenol compounds as a heterogeneous nanocatalyst. ANAL SCI 2024; 40:719-729. [PMID: 38324233 DOI: 10.1007/s44211-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
In this research, a high efficiency and environmentally friendly method to reduce nitrophenol compounds such as 4-nitrophenol (4-NP), 2,4,6-trinitrophenol (2,4,6-TNP) and 2,4-dinitrophenol (2,4-DNP) was used in the presence of poly(lactic acid)/chitosan-ZnO ( PLA/CS-ZnO) bionanocomposite. Using FT-IR, SEM, XRD and UV-Vis techniques, PLA/CS-ZnO bionanocomposite was identified after synthesis. Also, the mechanical properties of the bionanocomposite were investigated using the stress-strain curve. The mentioned bionanocomposite showed a very good efficiency in reducing nitrophenol compounds to aminophenolic compounds, so that under optimal conditions, 100% conversion and selectivity in the reduction of 4-NP, 2,4,6-TNP and 2,4-DNP to 4-aminophenol (4-AP), 2,4,6-triaminophenol (2,4,6-TAP) and 2,4-diaminophenol (2,4-DAP) were observed. UV-Vis absorption spectrum at different times were used to evaluate the progress of the reaction. Furthermore, after the reaction, PLA/CS-ZnO was recovered and used for the next cycle. The results showed that the bionanocomposite can perform ten consecutive cycles without a significant decrease in efficiency. The comparison of catalytic activity with other catalysts showed that the bionanocomposite synthesized in the present research has a higher efficiency in reduction of nitrophenol compounds.
Collapse
Affiliation(s)
- Ali Roostaie
- Department of Police Equipment and Technologies, Policing Sciences and Social Studies Institute, Tehran, Iran.
| | - Reza Haddad
- Department of Police Equipment and Technologies, Policing Sciences and Social Studies Institute, Tehran, Iran
| | - Mehdi Haji Abdolrasouli
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Hormozgan, Bandar-Abbas, Iran
- Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar-Abbas, Iran
| |
Collapse
|
3
|
Afzal MA, Javed M, Aroob S, Javed T, M Alnoman M, Alelwani W, Bibi I, Sharif M, Saleem M, Rizwan M, Raheel A, Maseeh I, Carabineiro SAC, Taj MB. The Biogenic Synthesis of Bimetallic Ag/ZnO Nanoparticles: A Multifunctional Approach for Methyl Violet Photocatalytic Degradation and the Assessment of Antibacterial, Antioxidant, and Cytotoxicity Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2079. [PMID: 37513090 PMCID: PMC10385465 DOI: 10.3390/nano13142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
In this study, bimetallic nanoparticles (NPs) of silver (Ag) and zinc oxide (ZnO) were synthesized using Leptadenia pyrotechnica leaf extract for the first time. Monometallic NPs were also obtained for comparison. The characterization of the prepared NPs was carried out using various techniques, including UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The latter confirmed the crystalline nature and diameter of the monometallic and bimetallic NPs of Ag and ZnO. The SEM images of the prepared NPs revealed their different shapes. The biological activities of the NPs were evaluated concerning their antibacterial, antioxidant, and cytotoxic properties. The antibacterial activities were measured using the time-killing method. The results demonstrated that both the monometallic and bimetallic NPs inhibited the growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The antioxidant activities of the NPs were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and their cytotoxicity was checked using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results indicated that the controlled quantity of the monometallic and bimetallic NPs did not affect the viability of the cells. However, the decreased cell (L-929) viability suggested that the NPs could have anticancer properties. Furthermore, the photocatalytic degradation of methyl violet and 4-nitrophenol was investigated using the prepared Ag/ZnO NPs, examining the factors affecting the degradation process and conducting a kinetic and thermodynamic study. The prepared Ag/ZnO NPs demonstrated good photocatalytic degradation (88.9%) of the methyl violet (rate constant of 0.0183 min-1) in comparison to 4-nitrophenol (NPh), with a degradation rate of 81.37% and 0.0172 min-1, respectively. Overall, the bimetallic NPs showed superior antibacterial, antioxidant, cytotoxic, and photocatalytic properties compared to the monometallic NPs of Ag and ZnO.
Collapse
Affiliation(s)
- Muhammad Asjad Afzal
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Javed
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Sadia Aroob
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Javed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Maryam M Alnoman
- Department of Biology, Faculty of Science, Taibah University, Yanbu P.O. Box 344, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ismat Bibi
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Sharif
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Ahmad Raheel
- Department of Chemistry, Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Ihsan Maseeh
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Muhammad Babar Taj
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
4
|
Han X, Wang Z, Lu N, Tang J, Lu P, Zhu K, Guan J, Feike T. Comprehensive study on the hydrochar for adsorption of Cd(II): preparation, characterization, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64221-64232. [PMID: 37061638 DOI: 10.1007/s11356-023-26956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Hydrothermal carbonization process via converting invasive plants into functional materials may provide a novel strategy to comprehensively control and utilized the exotic invasive plants. In this study, Eupatorium adenophorum was utilized to fabricate the hydrochar via hydrothermal carbonization process, which was further applied to remove Cd(II). The results showed that the hydrochar was a mesoporous material with abundant O-containing functional groups (OFPs) on the surface. The adsorption isotherms were fitted by both the Langmuir and Freundlich models, and the maximum adsorption amount achieved 24.53 mg/g. The adsorption dynamics were governed by surface adsorption and film diffusion. pH and ionic strength can exert a strong influence on the adsorption efficiency. The mechanisms on the adsorption of Cd(II) on the hydrochar concluded the pore-filling effects, electrostatic interactions, ion exchange, precipitation, coordination with π electrons, and surface complexation with the OFPs, such as hydroxyl, carboxylic, phenol, acetyl, and ester groups. Thus, hydrothermal carbonization process may provide a promising technique to fabricate the hydrocar for the treatment of Cd(II), which may facilitate comprehensive control of invasive plants and boost to the carbon neutrality.
Collapse
Affiliation(s)
- Xu Han
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Jiaqing Tang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Ping Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ke Zhu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, 250000, People's Republic of China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China.
| | - Til Feike
- Federal Research Centre for Cultivated Plants, Inst. for Strategies and Technology Assessment, Julius Kühn-Institut, 14532, Kleinmachnow, Germany
| |
Collapse
|
5
|
Ningsih LA, Yoshida M, Sakai A, Andrew Lin KY, Wu KCW, Catherine HN, Ahamad T, Hu C. Ag-modified TiO 2/SiO 2/Fe 3O 4 sphere with core-shell structure for photo-assisted reduction of 4-nitrophenol. ENVIRONMENTAL RESEARCH 2022; 214:113690. [PMID: 35718164 DOI: 10.1016/j.envres.2022.113690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing contaminants, such as 4-nitrophenol (4-NP), cause detrimental effects when discharged into the environment and thus should be reduced or removed from ecosystems. In this study, an Ag-loaded TiO2-SiO2-Fe3O4 (TSF) with a core-shell structure was employed for the photo-assisted reduction of 4-NP. Fe3O4, SiO2, and TiO2 in the core-shell structure served as a magnetic center, protective layer, and light absorber, respectively. To improve the reduction activity of 4-NP, Ag was loaded onto TSF under stirring, with a variation of the temperature (2-130 °C) and reaction time (1, 2, and 4 h). Under the optimized conditions, 5Ag-TSF (with 5 wt% of Ag) could promote the reduction of aqueous 4-NP solution (2 × 10-4 M, 75 mL) in the presence of NaBH4 (0.1 M, 5 mL) under irradiation by a metal halide lamp, affording over 98% reduction within 5 min and a rate constant of 0.185 min-1, demonstrating its promising activity. Moreover, due to the advantages of the core-shell structure, the magnetic properties of Fe3O4 were sufficient to enable facile recycling of the sample for further reaction; SiO2 could protect the Fe3O4 center from oxidation or reduction; TiO2 enabled Ag accommodation and absorbed light to generate electron-hole pairs. In summary, an Ag-loaded TiO2-SiO2-Fe3O4 sphere with high activity and recyclability for 4-NP reduction was prepared via a facile and simple stirring method, where the sample can be used as a promising material in environmental remediation.
Collapse
Affiliation(s)
- Lely Ayu Ningsih
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Masaaki Yoshida
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan; Blue Energy Center for SGE Technology (BEST), Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan
| | - Arisu Sakai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, 755-0097, Japan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, Kuo-Kuang Road, Taichung City, 250, Taiwan
| | - Kevin C W Wu
- Department of Chemical Engineering, National Taiwan University, Daan Dist, Taipei City, 106, Taiwan.
| | - Hepsiba Niruba Catherine
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| |
Collapse
|
6
|
Alrebdi TA, Rezk RA, Alghamdi SM, Ahmed HA, Alkallas FH, Pashameah RA, Mostafa AM, Mwafy EA. Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. MEMBRANES 2022; 12:877. [PMID: 36135895 PMCID: PMC9505665 DOI: 10.3390/membranes12090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reham A. Rezk
- Higher Technological Institute, 10th of Ramadan City, 6th of October Branch, 3rd Zone, 7th Section, 6th of October City, 10th of Ramadan 44629, Egypt
| | - Shoug M. Alghamdi
- Department of Physics, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Altowyan AS, Toghan A, Ahmed HA, Pashameah RA, Mwafy EA, Alrefaee SH, Mostafa AM. Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Ag/ZnO Thin Film Nanocomposite Membrane Prepared by Laser-Assisted Method for Catalytic Degradation of 4-Nitrophenol. MEMBRANES 2022; 12:membranes12080732. [PMID: 35893450 PMCID: PMC9331792 DOI: 10.3390/membranes12080732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Zinc oxide thin film (ZnO thin film) and a silver-doped zinc oxide nanocomposite thin film (Ag/ZnO thin film) were prepared by the technique of the pulsed laser deposition at 600 °C to be applicable as a portable catalytic material for the removal of 4-nitrophenol. The nanocomposite was prepared by making the deposition of the two targets (Zn and Ag), and it was analyzed by different techniques. According to the XRD pattern, the hexagonal wurtzite crystalline form of Ag-doped ZnO NPs suggested that the samples were polycrystalline. Additionally, the shifting of the diffraction peaks to the higher angles, which denotes that doping reduces the crystallite size, illustrated the typical effect of the dopant Ag nanostructure on the ZnO thin film, which has an ionic radius less than the host cation. From SEM images, Ag-doping drastically altered the morphological characteristics and reduced the aggregation. Additionally, its energy band gap decreased when Ag was incorporated. UV spectroscopy was then used to monitor the catalysis process, and Ag/ZnO thin films had a larger first-order rate constant of the catalytic reaction K than that of ZnO thin film. According to the catalytic experiment results, the Ag/ZnO thin film has remarkable potential for use in environmentally-favorable applications.
Collapse
|
9
|
Alkallas FH, Ahmed HA, Alrebdi TA, Pashameah RA, Alrefaee SH, Alsubhe E, Trabelsi ABG, Mostafa AM, Mwafy EA. Removal of Ni(II) Ions by Poly(Vinyl Alcohol)/Al2O3 Nanocomposite Film via Laser Ablation in Liquid. MEMBRANES 2022; 12:membranes12070660. [PMID: 35877862 PMCID: PMC9324330 DOI: 10.3390/membranes12070660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Al2O3-poly(vinyl alcohol) nanocomposite (Al2O3-PVA nanocomposite) was generated in a single step using an eco-friendly method based on the pulsed laser ablation approach immersed in PVA solution to be applicable for the removal of Ni(II) from aqueous solution, followed by making a physicochemical characterization by SEM, XRD, FT-IR, and EDX. After that, the effect of adsorption parameters, such as pH, contact time, initial concentration of Ni(II), and medium temperature, were investigated for removal Ni(II) ions. The results showed that the adsorption was increased when pH was 5.3, and the process was initially relatively quick, with maximum adsorption detected within 90 min of contact time with the endothermic sorption process. Moreover, the pseudo-second-order rate kinetics (k2 = 9.9 × 10−4 g mg−1 min−1) exhibited greater agreement than that of the pseudo-first-order. For that, the Ni(II) was effectively collected by Al2O3-PVA nanocomposite prepared by an eco-friendly and simple method for the production of clean water to protect public health.
Collapse
Affiliation(s)
- Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt;
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Salhah H. Alrefaee
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Emaan Alsubhe
- Physics Department, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir St.), Dokki, Giza 12622, Egypt;
- Correspondence:
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir St.), Dokki, Giza 12622, Egypt;
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
10
|
Yadav R, Chundawat TS, Surolia PK, Vaya D. Photocatalytic Degradation of Ortho‐Nitrophenol using ZnO‐β‐CD Nanocomposite. ChemistrySelect 2022. [DOI: 10.1002/slct.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renu Yadav
- Department of Applied Sciences The NorthCap University Gurugram Haryana 122017 India
| | - Tejpal S. Chundawat
- Department of Applied Sciences The NorthCap University Gurugram Haryana 122017 India
| | - Praveen K. Surolia
- Department of Chemistry Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Dipti Vaya
- Department of Chemistry Amity School of Applied Sciences Amity University Haryana 122413 India
| |
Collapse
|
11
|
Ali HM, Ibrahim SM, Abo Zeid EF, Al-Hossainy AF, El-Aal MA. A comparative study of Cu-anchored 0D and 1D ZnO nanostructures for the reduction of organic pollutants in water. RSC Adv 2022; 12:16496-16509. [PMID: 35754865 PMCID: PMC9168830 DOI: 10.1039/d2ra02515a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, Cu NPs were loaded at a fixed percentage (5 wt%) on 1D, (1D + 0D) and 0D ZnO nanostructures to investigate the effect of the support morphology on the reduction of organic pollutants in water. The synthesized materials were characterized by high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The results reveal that the loading of Cu NPs decreases the optical band gap, and a slight change in the crystallite sizes increases the specific surface area value of the nanocomposites. The TEM images reveal that 1D ZnO has an average width of 44.7 nm and an average length of 211 nm, while 0D ZnO has an average diameter of 54.5 nm. The HR-TEM and XPS data confirm the loading of metallic Cu NPs on the surface of the ZnO nanostructures. The pure ZnO and nanocomposites were tested for 4-nitrophenol (4-NP) reduction in the presence of NaBH4 at room temperature. The obtained results show that pure ZnO nanostructures have no catalytic performance, while the nanocomposites showed good catalytic activities. The catalytic reduction efficiency of 4-NP was found to follow the order of Cu/0DZnO > Cu/(1D + 0D)ZnO > Cu/1DZnO. The complete reduction of 4-NP has been observed to be achievable within 60 s using the Cu/0DZnO nanocomposite, with a k app value of 8.42 min-1 and good recyclability of up to five cycles. This nanocomposite was then applied in the reduction of organic dyes in water; it was found that the reduction rate constants for the methylene blue, Congo red, and acriflavine hydrochloride dyes were 1.4 min-1, 1.2 min-1, and 3.81 min-1, respectively. The high catalytic performance of this nanocomposite may be due to the small particle size, high specific surface area, and the high dispersion of Cu NPs on the surface of ZnO.
Collapse
Affiliation(s)
- Hazim M Ali
- Department of Chemistry, College of Science, Jouf University P.O. Box 2014 Sakaka Aljouf Saudi Arabia
| | - Samia M Ibrahim
- Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt
| | - Essam F Abo Zeid
- Physics Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ahmed F Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt
| | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
12
|
Synthesis and Characterization of New Catalysts Grains Based on Iron(Oxy)Hydroxides supported on Zirconium for the Degradation of 4-Nitrophenol in Aqueous Solution. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7138770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study reports the preparation of catalyst grains based on oxyhydroxides of iron and zirconium via the coprecipitation method and their application in the degradation of 4-nitrophenol. The morphology, microstructure, and surface composition of these catalysts were characterized by scanning electron microscopy, X-ray diffraction, nitrogen physisorption, and Fourier transform infrared spectroscopy. The catalytic activity of the grains was assessed in the degradation of 4-nitrophenol in a heterogeneous system at different operating conditions. Degradation rates up to 93% were obtained after 4 h of contact time where the catalytic activity of tested materials was higher at pH 7 than in acidic and basic conditions. Amorphous iron hydroxide with a ratio of 75% Zr+25%Fe showed the best catalytic properties. These novel materials are an interesting alternative for facing the water pollution caused by organic compounds.
Collapse
|
13
|
Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants. MINERALS 2022. [DOI: 10.3390/min12050525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review focuses on a reasoned search for articles to treat contaminated water using hydroxyapatite (HAp)-based compounds. In addition, the fundamentals of heterogeneous photocatalysis were considered, combined with parameters that affect the pollutants’ degradation using hydroxyapatite-based photocatalyst design and strategies of this photocatalyst, and the challenges of and perspectives on the development of these materials. Many critical applications have been analyzed to degrade dyes, drugs, and pesticides using HAp-based photocatalysts. This systematic review highlights the recent state-of-the-art advances that enable new paths and good-quality preparations of HAp-derived photocatalysts for photocatalysis.
Collapse
|
14
|
Keerthana M, Pushpa Malini T, Sangavi R, Arockia Selvi JP, Arthanareeswari M. Effect of Europium, Yttrium and Lutetium Doping on the Photocatalytic Property of CeO
2
Nanoparticles in the Reduction of p‐nitrophenol under Visible Light. ChemistrySelect 2022. [DOI: 10.1002/slct.202103610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Madhusuthanan Keerthana
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | | | - Ravi Sangavi
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | - John Peter Arockia Selvi
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | | |
Collapse
|
15
|
Alamro FS, Toghan A, Ahmed HA, Mostafa AM, Alakhras AI, Mwafy EA. Multifunctional leather surface embedded with zinc oxide nanoparticles by pulsed laser ablation method. Microsc Res Tech 2021; 85:1611-1617. [PMID: 34958527 DOI: 10.1002/jemt.24022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
A simple procedure was used to generate and decorate leather structures with different amounts from zinc oxide (ZnO) nanoparticles to produce multifunctional leather structure by pulsed laser ablation method in liquid media based on changing the ablation time in just one-pot method. The impact of varying concentrations of ZnO nanoparticles embedded on the surface of leather on water resistance, water vapor permeability, mechanical characteristics, and UV-shielding efficiency was examined by different characterization techniques like X-ray diffraction, surface area, UV-visible spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The results showed that the combination between the external functional groups of leather with ZnO nanoparticles was discovered. ZnO nanoparticles effectively coated the surface of leather tissue, as seen by SEM images, and their form a spherical morphology. Leather with ZnO nanoparticles added had the highest capacity to kill Escherichia coli bacteria, exceeding leather without modification and ZnO nanoparticles alone in 50-hr incubation. In addition, the incubation period had a substantial impact on the suppression of Staphylococcus aureus bacteria growth by leather samples.
Collapse
Affiliation(s)
- Fowzia S Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Arafat Toghan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Chemistry Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt.,Chemistry Department, College of Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Ayman M Mostafa
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Giza, Egypt.,Spectroscopy Department, Physics Research Institute, National Research Centre, Giza, Egypt
| | - Abbas I Alakhras
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Eman A Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Giza, Egypt.,Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
Guergueb M, Nasri S, Brahmi J, Al-Ghamdi YO, Loiseau F, Molton F, Roisnel T, Guerineau V, Nasri H. Spectroscopic characterization, X-ray molecular structures and cyclic voltammetry study of two (piperazine) cobalt(II) meso-arylporphyin complexes. Application as a catalyst for the degradation of 4-nitrophenol. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Mostafa AM, Mwafy EA, Toghan A. ZnO nanoparticles decorated carbon nanotubes via pulsed laser ablation method for degradation of methylene blue dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mostafa AM, Mwafy EA, Awwad NS, Ibrahium HA. Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Alamro FS, Mostafa AM, Al-Ola KAA, Ahmed HA, Toghan A. Synthesis of Ag Nanoparticles-Decorated CNTs via Laser Ablation Method for the Enhancement the Photocatalytic Removal of Naphthalene from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2142. [PMID: 34443972 PMCID: PMC8398854 DOI: 10.3390/nano11082142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
Silver nanoparticles (Ag NPs) were decorated with different amounts on the exterior walls of carbon nanotubes (CNTs) by a laser ablation assisted method, especially in liquid media to be applied as a good adsorption material against naphthalene. The laser ablation time was controlled the amount of decoration Ag NPs on CNTs. The prepared nanocomposite was analyzed via different analytical techniques. Ag NPs with a small size distribution of 29 nm are uniformly decorated with spherical shape on CNTs walls. The disorder degree of tubular structure and shifting of the vibrational characteristic peaks increase with the increase in the decoration of Ag NPs. After that, the prepared samples were investigated for the removal of naphthalene. These studies of loading Ag NPs with different amounts on the surface of CNTs act as a promising material for water treatment.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ayman M. Mostafa
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Center for Imaging and Microscopy (CIM), Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Khulood A. Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia;
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt;
- Chemistry Department, College of Sciences, Yanbu, Taibah University, Yanbu 30799, Saudi Arabia
| | - Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
20
|
Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, Zafar F, Nuhanović M. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116567] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Mostafa AM. The enhancement of nonlinear absorption of Zn/ZnO thin film by creation oxygen vacancies via infrared laser irradiation and coating with Ag thin film via pulsed laser deposition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Linear and nonlinear optical studies of Ag/Zn/ZnO nanocomposite thin film prepared by pulsed laser deposition technique. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129138] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Mostafa AM. Preparation and study of nonlinear response of embedding ZnO nanoparticles in PVA thin film by pulsed laser ablation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Pang X, Bai H, Zhao Y, Qu L, Xu D, Ding J, Fan W, Shi W. Photoelectrochemical detection of 4-nitrophenol by sensitive Ni/Cu2O photocathode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
|
27
|
Menazea A, Awwad NS. Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Mwafy EA, Mostafa AM. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|