1
|
Li J, Ren H, Li J. Application Values of Two Cu(II) Schiff Base Coordination Complexes on Blue Fluorescent Materials. J Fluoresc 2024; 34:2065-2072. [PMID: 37697175 DOI: 10.1007/s10895-023-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Two Schiff base binuclear Cu(II) compounds, [Cu2(L)2·(H2O)2]·2DMF (1) together with its coordination polymer (CP) [Cu2(L)2·(4,4'-bpy)2]n (2) (H2L is 4-hydroxy-3-((2-hydroxy-5-mercaptobenzylidene)amino)-2H-chromen-2-one and 4,4'-bpy is 4,4'-bipyridine), were generated under an identical experimental environment in the absence and existence of auxiliary ligand 4,4'-bpy. Fluorescence spectroscopy testing shows that the ligand-based blue fluorescence emission offers potential for application as a blue photoluminescent material.
Collapse
Affiliation(s)
- Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Hongjiang Ren
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Jiangtao Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Shafiq I, Haq S, Javed T, Bullo S, Ahmed S, Alhokbany N, Ahamad T. Influence of benzothiophene acceptor moieties on the non-linear optical properties of pyreno-based chromophores: first-principles DFT framework. RSC Adv 2024; 14:15964-15978. [PMID: 38765473 PMCID: PMC11099989 DOI: 10.1039/d4ra00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Herein, a series of heterocyclic organic compounds (PYFD1-PYFD7) are designed with different acceptor moieties at the terminal position of a reference compound (PYFR) for nonlinear optical (NLO) active materials. The optoelectronic characteristics of the designed chromophores were investigated using density functional theory (DFT) calculations with the M06/6-311G(d,p) functional. Frontier molecular orbital (FMO) analysis revealed a significant decrease in the energy of the band gaps (2.340-2.602 eV) for the derivatives as compared to the PYFR reference compound (3.12 eV). An efficient transfer of charge from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) was seen, which was further corroborated by the density of states (DOS) and transition density matrix (TDM) heat maps. The results of the global reactivity parameters (GRPs) indicated that all derivatives exhibited greater softness (σ = 0.384-0.427 eV) and lower hardness (η = 0.394-1.302 eV) as compared to PYFR, indicating a higher level of polarizability in the derivatives. Moreover, all of the derivatives showed significant findings in terms of nonlinear optical (NLO) results as compared to the reference chromophore. PYFD2 showed the most effective NLO response (α = 1.861 × 10-22 and βtot = 2.376 × 10-28 esu), including a lowered band gap of 2.340 eV, the maximum softness value of 0.4273 eV, and the lowest hardness value of 1.170 eV as compared to other chromophores. The incorporation of different acceptors and thiophene as a π-spacer in this structural alteration significantly contributed to achieving remarkable NLO responses. Therefore, our findings may motivate experimentalists to synthesize these designed NLO active materials for the current advanced technological applications.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Tayyaba Javed
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University Sukkur Sindh 65170 Pakistan
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital Boston MA 02114 USA
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Bai X, Jiang J, Tu S, Zhang W. Hydrogels Loaded with Atorvastatin-Metal Organic Framework Have a Preventive Effect on Coronary Heart Disease. Chem Biodivers 2024; 21:e202301511. [PMID: 38063816 DOI: 10.1002/cbdv.202301511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 02/22/2024]
Abstract
In the research, a new three-dimensional coordination polymer was synthesized by solvothermal method based on the metal ligand LCu =[Cu(2,4-pydca)2 ]2- (2,4-pydca=pyridine-2,4-dicarboxylate) and alkaline-earth ion CaII with chemical composition {[Ca(H2 O)2 ][LCu ]⋅DMSO ⋅ 2H2 O}n (1) (DMSO=dimethyl sulfoxide). The complex 1 was characterized soundly by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (EA), single-crystal X-ray diffraction (SCXRD) and thermogravimetric analysis (TGA). Using atorvastatin as drug model, carboxymethyl chitosan and calcium alginate as raw materials, a new type of metal gel particles was prepared. The microstructure of the gel was observed by scanning Electron Microscope (SEM) and its modulation effect on the activity of human cardiomyocytes was evaluated. The results show that the gel particles presented a three-dimensional porous structure and were able to significantly up-regulate the cell activity of human cardiomyocytes, which is expected to develop the metal gel particles into drugs for the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Xinghua Bai
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sijia Tu
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Weizong Zhang
- Department of Cardiovascular Medicine, First People's Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Majumdar D, Dubey A, Tufail A, Sutradhar D, Roy S. Synthesis, spectroscopic investigation, molecular docking, ADME/T toxicity predictions, and DFT study of two trendy ortho vanillin-based scaffolds. Heliyon 2023; 9:e16057. [PMID: 37251479 PMCID: PMC10220319 DOI: 10.1016/j.heliyon.2023.e16057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
In this article, we have synthesized two contemporary ortho-vanillin-based Salen-type ligands (H2L1/H2L2) characterized by modern spectroscopic tools. EDX analysis supports the elemental composition (C, N, O, and Br). SEM examined the morphology of the synthesized compounds. The molecular geometry was optimized in the gas phase using B3LYP-D3/6-311G (d, p) level. The global reactivity parameters, HOMO-LUMO energy gap (Δ), atomic properties, MESP, and ADME/T, vividly explore the chemical reactivity and toxicity of two Salen-type ligands. The DFT simulated IR/NMR characterized essential structural assignments, and UV-Visible spectra were employed to predict the optical properties. The article demonstrated in silico molecular docking against the Gm + ve Bacillus subtilis (6UF6), and Gm -ve Proteus Vulgaris establishes the ligand binding ability with essential amino acids through conventional H-bonding or other significant interactions. The docking simulation is compared for two compounds better than the control drugs and confirms the antimicrobial activity. The theoretical drug-like properties have been explored in-depth by ADME/T using the SWISSADME database. The analysis estimated the molecule's lipophilicity, the consensus P0/W, and water solubility. Thus, using various pharmaco-logical parameters, toxicity explains where the electron-withdrawing Br group plays a more toxic effect in H2L2 than in H2L1.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 274203, India
- Department of Pharmacology, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 274203, India
| | - Dipankar Sutradhar
- School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
5
|
Tahir MN, Ali A, Khalid M, Ashfaq M, Naveed M, Murtaza S, Shafiq I, Asghar MA, Orfali R, Perveen S. Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules 2023; 28:molecules28072967. [PMID: 37049730 PMCID: PMC10096040 DOI: 10.3390/molecules28072967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Two aminobenzoic acid based crystalline imines (HMBA and DHBA) were synthesized through a condensation reaction of 4-aminobenzoic acid and substituted benzaldehydes. Single-crystal X-ray diffraction was employed for the determination of structures of prepared Schiff bases. The stability of super molecular structures of both molecules was achieved by intramolecular H-bonding accompanied by strong, as well as comparatively weak, intermolecular attractive forces. The comparative analysis of the non-covalent forces in HMBA and DHBA was performed by Hirshfeld surface analysis and an interaction energy study between the molecular pairs. Along with the synthesis, quantum chemical calculations were also accomplished at M06/6-311G (d, p) functional of density functional theory (DFT). The frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), natural bond orbitals (NBOs), global reactivity parameters (GRPs) and natural population (NPA) analyses were also carried out. The findings of FMOs found that Egap for HMBA was examined to be smaller (3.477 eV) than that of DHBA (3.7933 eV), which indicated a greater charge transference rate in HMBA. Further, the NBO analysis showed the efficient intramolecular charge transfer (ICT), as studied by Hirshfeld surface analysis.
Collapse
Affiliation(s)
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Mubashir Naveed
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Shahzad Murtaza
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.K.); (R.O.)
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
6
|
Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds. Catal Letters 2023. [DOI: 10.1007/s10562-023-04300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
AOULED IM, UYSAL S. Investigation of Thermal and Magnetic Properties of [MSalen/Saloph] (M= Cr3+, Fe3+ or Co3+) Capped Dinuclear Complexes of Two Novel Tetraoxocalix[2]arene[2]triazine Ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Mohan S, Navamani P, Dhanalekshmi KI, Jayamoorthy K, Srinivasan N. NMR spectral, DFT and antibacterial studies of triazole derivatives. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- S. Mohan
- Research and Development Center, Bharathiar University, Coimbatore, Tamil Nadu, India
- Department of Chemistry, Rajalakshmi Engineering College, Thandalam, Tamil Nadu, India
| | - P. Navamani
- Research and Development Center, Bharathiar University, Coimbatore, Tamil Nadu, India
- PG Assistant in Chemistry, GGHSS, Kanchipuram, Tamil Nadu, India
| | - K. I. Dhanalekshmi
- Department of Chemistry, Global Institute of Engineering & Technology, Moinabad, R. R. District, Hyderabad, Telgana, India
| | - K. Jayamoorthy
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - N. Srinivasan
- Research and Development Center, Bharathiar University, Coimbatore, Tamil Nadu, India
- Department of Chemistry, Pachaiyappa’s College for Men, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
9
|
Khalid M, Khan M, Mahmood K, Arshad M, Imran M, Braga AAC, Hussain R. Theoretical designing of non-fullerene derived organic heterocyclic compounds with enhanced nonlinear optical amplitude: a DFT based prediction. Sci Rep 2022; 12:20220. [DOI: 10.1038/s41598-022-21894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractIn current era, non-fullerene (NF) chromophores have been reported as significant NLO materials due to promising optoelectronic properties. Therefore, a series of NF based chromophores abbreviated as TPBD2-TPBD6 with D–π–A architecture was designed from the reference compound (TPBR1) by its structural tailoring with an efficient donor and various acceptor groups for the first time. First, the structures of said compounds were optimized at M06-2X/6-311G (d,p) level. Further, the optimized structures were utilized to execute frontier molecular orbitals (FMOs), UV–Visible (UV–Vis) absorption, density of states (DOS) and transition density matrix (TDM) analyses at the same level to understand the non-linear (NLO) response of TPBR1 and TPBD2-TPBD6. Promising NLO results were achieved for all derivatives i.e., the highest amplitude of linear polarizability ⟨α⟩, first (βtotal) and second ($$\gamma$$
γ
total) hyperpolarizabilities than their parent molecule. The compound TPBD3 was noted with the most significant NLO properties as compared to the standard molecule. The structural modeling approach by utilizing the acceptor molecules has played a prominent role in attaining favorable NLO responses in the molecules. Thus, our study has tempted the experimentalists to synthesize the proposed NLO materials for the modern optoelectronic high-tech applications.
Collapse
|
10
|
Chai LQ, Li CG, Chai YM, Zhou L. Spectroscopic studies, TD/DFT calculations, electrochemical, antibacterial, and Hirshfeld surface analysis of Ni(II) and Co(III) complexes based on 3-ethoxy salicylaldehyde. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Zhou Y, Lin HH, Cai QQ, Wang DH. A Cu(II) coordination polymer: Crystal structure and therapeutic effect on sepsis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Kong YM, Li XB, Huang M. Therapeutic effect of Cu(II) coordination polymer on acute asthma and ligand optimization using machine learning algorithms. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Unravelling the Synthetic Mimic, Spectroscopic Insights, and Supramolecular Crystal Engineering of an Innovative Heteronuclear Pb(II)-Salen Cocrystal: An Integrated DFT, QTAIM/NCI Plot, NLO, Molecular Docking/PLIP, and Antibacterial Appraisal. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Li R, Dou L, Tong L, Dong W. Exploring two helical centrosymmetric homotetranuclear Cu (II) bis (salamo)‐based complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruo‐Yu Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu PR China
| | - Lin Dou
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu PR China
| | - Li Tong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu PR China
| | - Wen‐Kui Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu PR China
| |
Collapse
|
16
|
Biswas S, Karim S, Zangrando E, Chandra A. An effortless approach to synthesize two structurally diverse nano copper (II) materials and assessment of their apoptosis inducing ability on lung cancer cell line. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sneha Biswas
- Department of Chemistry University of Calcutta Kolkata India
| | - Suhana Karim
- Department of Chemistry University of Calcutta Kolkata India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste Trieste Italy
| | - Arpita Chandra
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy Chittaranjan National Cancer Institute Kolkata West Bengal India
| |
Collapse
|
17
|
New 15-membered macrocyclic Schiff base ligand; synthesis some Cd(II), Mn(II) and Zn(II) complexes, crystal structure, cytotoxicity, antibacterial and antioxidant activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Majumdar D, Frontera A, Gomila RM, Das S, Bankura K. Synthesis, spectroscopic findings and crystal engineering of Pb(ii)-Salen coordination polymers, and supramolecular architectures engineered by σ-hole/spodium/tetrel bonds: a combined experimental and theoretical investigation. RSC Adv 2022; 12:6352-6363. [PMID: 35424552 PMCID: PMC8982041 DOI: 10.1039/d1ra09346k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Spontaneous self-assembly is one of the available synthetic routes to achieve structurally versatile and unique crystal complexes with selected metal-ligand combinations in the spirit of pseudohalides. In this endeavour, we designed a novel 1D coordination polymer (CP), [(Cd)(Pb)(L)(η1-NCS)(η1-SCN)] n (1), using a compartmental Salen ligand (H3L) in the presence of NaSCN. The characterization of the CP was accomplished using several spectroscopic techniques: MALDI-TOF, PXRD, SEM, EDX mapping, and single-crystal X-ray crystallography. The CP crystallizes in the monoclinic space group P21/c with Z = 4. SCXRD reveals Cd(ii) and Pb(ii) metal ions fulfilled distorted square pyramidal and hemi-directed coordination spheres. Cd(ii) is placed in the inner N2O2 and heavier Pb(ii) in the outer O4 compartments of the de-protonated form of the ligand [L]2-. Supramolecular interactions in the intricate crystal structure produced attractive molecular architectures of the compound. The flexible aliphatic -OH pendent group coordinates with the Pb(ii) ions. This unique binding further elevates the supramolecular crystal topographies. The supramolecular interactions were authenticated by Hirshfeld surface analysis (HSA). The observation of the recurring unconventional tetrel bonds was rationalized by DFT calculations and surface plots of molecular electrostatic potential (MEP). In the 1D polymeric chain in the complex, the O-atom of the -OH groups shows a tetrel bonding interaction with the Pb atom. We have found that the combination of QTAIM/NCI and QTAIM/ELF plots helps reveal the nature of these contacts. Moreover, the QTAIM/ELF plot determines the donor-acceptor interaction between the O-atom and the Pb atom, establishing the σ-hole. Agreeably, the σ-hole interaction also helps Pb(ii) serve as a Lewis acid in the complex. Finally, spodium and tetrel bonds are formed, possible thanks to a hemi-directional coordination sphere of the Pb atoms in the polymer described.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya Tamluk 721636 West Bengal India .,Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - A Frontera
- Department de Quimica, Universitat de les Illes Balears Cra. de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Rosa M Gomila
- Department de Quimica, Universitat de les Illes Balears Cra. de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management Near Khokhara Circle, Maninagar East Ahmedabad-380026 Gujarat India
| | - Kalipada Bankura
- Department of Chemistry, Tamralipta Mahavidyalaya Tamluk 721636 West Bengal India
| |
Collapse
|
19
|
Bhalla P, Tomer N, Bhagat P, Malhotra R. Chromone functionalized pyridine chemosensor for cupric ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120279. [PMID: 34438118 DOI: 10.1016/j.saa.2021.120279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A new Schiff base 2-ethoxy-3-{[(6-{[(2-ethoxy-4-hydroxy-2H-chromen-3-yl)methylidene]amino}pyridine-2-yl)imino]methyl}-2H-chromen-4-ol (CD) was synthesized as a result of the condensation of 2,6-diaminopyridine and 3-formyl chromone in 1:2 M ratio and used for cupric ions detection and characterized through FTIR, HRMS and 1H NMR spectral techniques. The sensing capability of Schiff base for cupric ions as compared to other transition metal ions was examined by absorbance and emission studies. A considerable decrease in emission intensity appeared in Schiff base in the case of cupric ions while irrelevant changes were examined for the rest of the ions. The binding stoichiometry was obtained as 1:2 for CD: Cu2+ complex intended from the job's plot which was confirmed through HRMS spectral technique. DFT calculations were carried for the confirmation of structural relationships and absorption-emission data. The Regression coefficient, Limit of detection, and Association constant were obtained as 98.7%, 1.2 × 10-6 M, and 3.26 × 104 M-1 respectively using Benesi-Hildebrand (B-H) equation. The sensing power of Schiff base CD to recognize cupric ions was unaltered by the addition of the rest of metal ions, which was authenticated through interference studies. Schiff base CD and its complex with cupric ions were found stable over an extensive time period as revealed by time-reliant studies. The data collected by pH studies revealed that the preferred pH range for detecting cupric ions by Schiff base CD was 6 to 11. The Schiff base was finally utilized for sensing cupric ions in a variety of spiked samples of water like canal water, tap water, groundwater, distilled water.
Collapse
Affiliation(s)
- Parul Bhalla
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Nisha Tomer
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Pooja Bhagat
- Department of Chemistry, AND College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
20
|
Majumdar D, Elizabeth Philip J, Roy S, Tüzün B. Reinvigorate the synthesis, spectroscopic findings, SEM morphology investigation, and antimicrobial silhouette of contemporary Salen ligands: A comprehensive DFT landscape. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Deng YH, Yan YJ, Zhang J, Na LP, Zhang Y, Dong WK. Exploitation of a Half-Conjugate Polydentate Salamo-Salen Hybrid Ligand and Its Two Phenoxide-Bridged Heterohexanuclear 3d-s Double-Helical Cluster Complexes. Inorg Chem 2021; 61:1018-1030. [PMID: 34967616 DOI: 10.1021/acs.inorgchem.1c03066] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A half-conjugate polydentate Salamo-Salen hybrid ligand, H5L, containing two unique N2O2 pockets was first designed so that these metal ions in the complexes appear in different coordination modes. Two heterohexanuclear 3d-s double-helical cluster complexes, [Zn4Ca2L2(μ1-OAc)2(EtOH)2]·2EtOH (1; EtOH = ethanol) and [Zn4Sr2L2(μ2-OAc)2(MeOH)2]·2CH2Cl2 (2; MeOH = methanol), are reported that are formed through the reaction of H5L with zinc(II) and calcium(II) acetate or strontium(II) acetate, respectively. IR spectral analysis of the two complexes showed the existence of monodentate- and bidentate-coordinated acetate ions. The fluorescence properties of the ligand and its two heterohexanuclear complexes were explored in MeOH and water solutions, separately. In addition, theoretical calculations (density functional theory, interaction region indicator, and bond order) were performed to further understand the formation of a single-molecular double helix and the electron distribution characteristics of the two complexes.
Collapse
Affiliation(s)
- Yun-Hu Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Li-Ping Na
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
22
|
Imran M, Khalid M, Jawaria R, Ali A, Asghar MA, Shafiq Z, Assiri MA, Lodhi HM, Braga AA. Exploration of Photophysical and Nonlinear Properties of Salicylaldehyde-Based Functionalized Materials: A Facile Synthetic and DFT Approach. ACS OMEGA 2021; 6:33914-33922. [PMID: 34926938 PMCID: PMC8674987 DOI: 10.1021/acsomega.1c04984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The current research presents the synthesis of novel salicylaldehyde thiosemicarbazones (1-6) and their spectroscopic characterization employing UV-visible, Fourier transform infrared spectroscopy, and NMR techniques. Experimental results are compared and validated with the results obtained theoretically by employing density functional theory at the M06 level with the 6-311G (d,p) basis set. Further, various parameters [natural bond orbital (NBO)], linear and nonlinear optical (NLO) properties, and global reactivity parameters (GRPs) are computationally calculated. The NBO approach has confirmed the stability of compounds on account of charge delocalization and hyper conjugative interaction network. Frontier molecular orbital analysis has explained the charge transfer and chemical reactivity capability, while GRPs have led to the analysis of kinetic stability of the studied molecules. Further, the probability of being NLO-active has been theoretically proved by the HOMO/LUMO energy difference (4.133-4.186 eV) and β values (192.778-501.709 a.u). These findings suggest that the studied compounds possess potential NLO applications as they have shown larger NLO values in comparison with that of the urea molecule, and such distinct properties prove their technological importance.
Collapse
Affiliation(s)
- Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rifat Jawaria
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Asif Ali
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hafiza Munazza Lodhi
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ataualpa Albert
Carmo Braga
- Departamento
de Química Fundamental, Instituto
de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
23
|
Siddiqui WA, Khalid M, Ashraf A, Shafiq I, Parvez M, Imran M, Irfan A, Hanif M, Khan MU, Sher F, Ali A. Antibacterial metal complexes of
o
‐sulfamoylbenzoic acid: Synthesis, characterization, and DFT study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Adnan Ashraf
- Department of Chemistry The University of Lahore Lahore Pakistan
| | - Iqra Shafiq
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Masood Parvez
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta Canada
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Muhammad Hanif
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Falak Sher
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore Pakistan
| | - Akbar Ali
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
24
|
Mohamed M, Abdelakder H, Abdellah B. Microwave assisted synthesis of 4-aminophenol Schiff bases: DFT computations, QSAR/Drug-likeness proprieties and antibacterial screening. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Zhang X, Li C, Chai Y, Chai L. Antimicrobial activities of cadmium (II) and nickel (II) complexes containing pyridine ring: Investigation of crystallographic, spectroscopic, Hirshfeld surface analysis, and TD/DFT calculations. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Fang Zhang
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Cheng‐Guo Li
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Yong‐Mei Chai
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Lan‐Qin Chai
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
26
|
Majumdar D, Pal TK, Sakib SA, Das S, Bankura K, Mishra D. Synthesis, spectroscopic characterization, and SC-XRD study of one privileged heteronuclear Ni(II)/Hg(II)-Salen complex: An exclusive DFT outlook. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Rashidi N, Fard MJS, Hayati P, Janczak J, Yazdian F, Rouhani S, Msagati TA. Antibacterial and cytotoxicity assay of two new Zn(ii)complexes: Synthesis, characterization, X-Ray structure, topology, Hirshfeld surface and thermal analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Li XY, Wang YB, Song Y, Xiang D, He C. A New 2D Porous Pb-MOF Based on Ribbon‐Shaped SBU and 2-Nitroimidazole: Structure and Properties. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ghosh K, Frontera A, Chattopadhyay S. A theoretical insight on the anion⋯anion interactions observed in the solid state structure of a hetero-trinuclear complex. CrystEngComm 2021. [DOI: 10.1039/d0ce01513j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A hetero-nuclear cobalt(iii)/potassium complex has been synthesized and characterized by several analytical techniques. DFT computations indicate the existence of anion⋯anion interactions in its solid state.
Collapse
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Antonio Frontera
- Departamento de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | | |
Collapse
|