1
|
Wafti NSA, Choong TSY, Lau HLN, Yunus R, Abd-Aziz S, Raof NA. Kinetic study on the production of biodegradable lubricant by enzymatic transesterification of high oleic palm oil. Process Biochem 2023; 131:91-100. [DOI: 10.1016/j.procbio.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Daud S, Abid OUR, Rehman W, Niaz M, Sardar A, Rasheed L, Niaz B, Shah BA, Alotaibi HF, Obaidullah AJ, Alanazi MM. In vitro evaluation of novel mefenamic acid derivatives as potential α-glucosidase and urease inhibitors: Design, synthesis, in silico and cytotoxic studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023; 27:101680. [DOI: 10.1016/j.jscs.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Synthesis, carbonic anhydrase inhibition, anticancer activity, and molecular docking studies of 1,3,4-oxadiazole derivatives. Mol Divers 2023; 27:193-208. [PMID: 35344136 DOI: 10.1007/s11030-022-10416-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
In this work, we have synthesized various organic compounds possessing 1,3,4-oxadiazole as a core structure and the structure of the newly synthesized target compounds has been revealed using different analytical approaches such as FT-IR, LCMS, and NMR (proton and carbon), respectively. The in vitro carbonic anhydrase potentials of these synthesized 17 different analogues were investigated. The result suggests that compound 7g, a 3-pyridine substituted analogue with an IC50 of 0.1 µM, was found to have the most potent carbonic inhibitory activity (11-fold more active) than the positive control (acetazolamide) with an IC50 of 1.1 ± 0.1 µM. Besides, among the series 7(a-q) approved in the identification of four potent carbonic anhydrase inhibitors with the IC50 standards varies from 0.1 to 1.0 ± 0.1 µM. Additionally, the non-competitive behaviour for potent compound 7g was analysed using the Lineweaver-Burk plot from the kinetic study. Furthermore, the anticancer activity of all the synthesized compounds screened against B16F10 melanoma cells using the MTT assay method. Additionally, the molecular docking studies revealed that 7g inhibitor shows good binding energy as well as good binding interaction pattern along with enzyme.
Collapse
|
4
|
Zhang ZQ, Liu J, Zhang GY, Li B, Li K, Jin Z, Bai X, Tang YZ. Design, synthesis, antibacterial activity evaluation and molecular docking study of pleuromutilin derivatives bearing amide side chains. Chem Biol Drug Des 2022; 100:564-579. [PMID: 35730249 DOI: 10.1111/cbdd.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
A seize of pleuromutilin derivatives containing amide side chains were designed and synthesized as potential antibiotics against Methicillin-resistant Staphylococcus aureus (MRSA). Among all target compounds (compounds 11-30), compound 25 was found to have the strongest antibacterial activity against MRSA (minimum inhibitory concentration = 0.5 μg/ml). The result of the time-kill curves indicated that compound 25 could repress the growth of MRSA in vitro obviously (-3.72 log10 CFU/ml reduction). Furthermore, molecular docking studies demonstrated that compound 25 was localized in the binding pocket of 50S ribosomal subunit (ΔGb = -8.99 kcal/mol). Besides, compound 25 displayed low cytotoxicity to RAW 264.7 cells. The results suggested that compound 25 might be further developed into a novel antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Zhuo-Qi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Tok F, Baltaş N, Tatar G, Koçyiğit-Kaymakçıoğlu B. Synthesis, biological evaluation and in silico studies of new pyrazoline derivatives bearing benzo[d]thiazol-2(3H)-one moiety as potential urease inhibitors. Chem Biodivers 2022; 19:e202100826. [PMID: 35018718 DOI: 10.1002/cbdv.202100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
Novel pyrazoline derivatives containing benzo[d]thiazol-2(3H)-one moiety were synthesized and screened for their inhibitory properties against to urease, a clinically important metabolic enzyme. In vitro enzyme inhibition studies revealed that all pyrazolines (7.21-87.77 µM) were more potent than the standard inhibitor acetohydroxamic acid (251.74 µM) against the urease enzyme. Most notably, compound 2m , which is more active than the other compounds in in vitro and molecular docking studies, showed a significant inhibition potential and efficient IC 50 values (7.21±0.09 µM) and in silico inhibition constant (0.11 µM). Furthermore, molecular dynamics (MD) simulation analysis suggests that the binding stability of urease enzyme and compound 2m were stably maintained during the 100 ns simulation time. Compound 2m also exhibited good physicochemical and pharmacokinetic parameters. The overall results of urease inhibition have indicated that these pyrazoline derivative compounds can be further optimized and developed for the discovery of novel urease inhibitors.
Collapse
Affiliation(s)
- Fatih Tok
- Marmara Universitesi Eczacilik Fakultesi, Pharmaceutical Chemistry, Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,, 34854 4/A, Istanbul, TURKEY
| | - Nimet Baltaş
- Recep Tayyip Erdogan University Faculty of Arts and Sciences: Recep Tayyip Erdogan Universitesi Fen Edebiyat Fakultesi, Chemistry, Department of Chemistry, Faculty of Arts and Sciences, Rize, TURKEY
| | - Gizem Tatar
- Karadeniz Technical University: Karadeniz Teknik Universitesi, Bioistatistics and Medical Informatics, Department of Biostatistics and Medical Informatics, Faculty of Medicine, Trabzon, TURKEY
| | - Bedia Koçyiğit-Kaymakçıoğlu
- Marmara University: Marmara Universitesi, Pharmaceutical Chemistry, Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,, Türkiye, 34854 4/A, Istanbul, TURKEY
| |
Collapse
|
6
|
Song WQ, Liu ML, Li SY, Xiao ZP. Recent Efforts in the Discovery of Urease Inhibitor Identifications. Curr Top Med Chem 2021; 22:95-107. [PMID: 34844543 DOI: 10.2174/1568026621666211129095441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Urease is an attractive drug target for designing anti-infective agents against pathogens such as Helicobacter pylori, Proteus mirabilis, and Ureaplasma urealyticum. In the past century, hundreds of medicinal chemists focused their efforts on explorations of urease inhibitors. Despite the FDA's approval of acetohydroxamic acid as a urease inhibitor for the treatment of struvite nephrolithiasis and the widespread use of N-(n-butyl)thiophosphoric triamide as a soil urease inhibitor as nitrogen fertilizer synergists in agriculture, urease inhibitors with high potency and safety are urgently needed. Exploration of novel urease inhibitors has therefore become a hot research topic recently. Herein, inhibitors identified worldwide from 2016 to 2021 have been reviewed. They structurally belong to more than 20 classes of compounds such as urea/thioure analogues, hydroxamic acids, sulfonamides, metal complexes, and triazoles. Some inhibitors showed excellent potency with IC50 values lower than 10 nM, having 10000-fold higher potency than the positive control thiourea.
Collapse
Affiliation(s)
- Wan-Qin Song
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Mei-Ling Liu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Su-Ya Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Zhu-Ping Xiao
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| |
Collapse
|
7
|
Liu J, Zhang GY, Zhang Z, Li B, Chai F, Wang Q, Zhou ZD, Xu LL, Wang SK, Jin Z, Tang YZ. Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker. Bioorg Chem 2021; 112:104956. [PMID: 33991838 DOI: 10.1016/j.bioorg.2021.104956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85-110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Chai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Ling Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|