1
|
Abedin MM, Pal TK, Uddin MN, Alim MA, Sheikh MC, Paul S. Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative. Heliyon 2024; 10:e34556. [PMID: 39082025 PMCID: PMC11284382 DOI: 10.1016/j.heliyon.2024.e34556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The sulfonamide Schiff base compound (E)-4-((4-(dimethylamino)benzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide was successfully prepared and fully characterized. The foremost objective of this study was to explore the molecular geometry of the aforementioned compound and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, anticancer and antioxidant activities. The molecular structure of this compound was optimized using the B3LYP/6-311G+(d,p) level of theory. The compound was completely characterized utilizing both experimental and DFT approaches. Molecular electrostatic potential, frontier molecular orbitals, Fukui function, drug likeness, and in silico molecular docking analyses of this compound were performed. Wave functional properties such as localized orbital locator, electron localization function and non-covalent interactions were also simulated. The compound was screened for anticancer and antioxidant activities using in vitro technique. The observed FT-IR, UV-Vis, and 1H NMR results compared with simulated data and both results were fairly consistent. The experimental and computational spectral findings confirm the formation of the Schiff base compound. Both π-π* and n-π* transitions were observed in both experimental and computational UV-Vis spectra. The examined compound followed to Pfizer, Golden Triangle, GSK, and Lipinski's rules. Consequently, it possesses a more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, making it a suitable candidate for non-toxic oral drug use. Moreover, the compound exhibited promising insulysin inhibition activity in an in silico molecular docking. The compound showed in vitro anticancer activity against A549 cancer cells with an IC50 value of 40.89 μg/mL and moderate antioxidant activity.
Collapse
Affiliation(s)
- Md. Minhazul Abedin
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Tarun Kumar Pal
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Md. Najem Uddin
- Pharmaceutical Sciences Research Division, BCSIR Laboratories (Dhaka), Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh
| | - Mohammad Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Subrata Paul
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| |
Collapse
|
2
|
Min L, Liang W, Bajsa-Hirschel J, Ye P, Wang Q, Sun X, Cantrell CL, Han L, Sun N, Duke SO, Liu X. Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3- d]pyrimidine Compounds. Molecules 2023; 28:7363. [PMID: 37959782 PMCID: PMC10647610 DOI: 10.3390/molecules28217363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Natural products are a main source of new chemical entities for use in drug and pesticide discovery. In order to discover lead compounds with high herbicidal activity, a series of new pyrido[2,3-d] pyrimidine derivatives were designed and synthesized using 2-chloronicotinic acid as the starting material. Their structures were characterized with 1H NMR, 13C NMR and HRMS, and the herbicidal activities against dicotyledonous lettuce (Lactuca sativa), field mustard (Brassica campestris), monocotyledonous bentgrass (Agrostis stolonifera) and wheat (Triticum aestivum) were determined. The results indicated that most of the pyrido[2,3-d] pyrimidine derivatives had no marked inhibitory effect on lettuce at 1 mM. However, most of the pyrido[2,3-d] pyrimidine derivatives possessed good activity against bentgrass at 1 mM. Among them, the most active compound, 3-methyl-1-(2,3,4-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (2o), was as active as the positive controls, the commercial herbicides clomazone and flumioxazin. Molecular simulation was performed with molecular docking and DFT calculations. The docking studies provided strong evidence that 2o acts as an herbicide by inhibition of protoporphyrinogen oxidase. However, the physiological results indicate that it does not act on this target in vivo, implying that it could be metabolically converted to a compound with a different molecular target.
Collapse
Affiliation(s)
- Lijing Min
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Wei Liang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA; (J.B.-H.); (C.L.C.)
| | - Peng Ye
- Shanghai Souguo Science & Technology Co. Ltd., Shanghai 201708, China;
| | - Qiao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Xinpeng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA; (J.B.-H.); (C.L.C.)
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| |
Collapse
|
3
|
Synthesis, Computational, Electronic spectra, and molecular docking studies of 4-((diphenylmethylene)amino)-N-(pyrimidin-2-yl)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Kanagavalli A, Thilagavathi G, Jayachitra R, Elangovan N, Sowrirajan S, Shadakshara Murthy KR, Thomas R. Synthesis, Electronic Structure, UV–Vis, Wave Function, and Molecular Docking Studies of Schiff Base (Z)-N-(Thiazol-2-yl)-4-((Thiophene-2-ylmethylene)Amino)Benzenesulfonamide. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- A. Kanagavalli
- Department of Physics, Government Arts College, Bharathidasan University, Tiruchirappalli, India
| | - G. Thilagavathi
- Department of Physics, Nehru Memorial College, Bharathidasan University, Tiruchirappalli, India
| | - R. Jayachitra
- Department of Physics, Urumu Dhanalakshmi College, Bharathidasan University, Tiruchirappalli, India
| | - N. Elangovan
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, India
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| | - S. Sowrirajan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Renjith Thomas
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
5
|
Synthesis, computational, and molecular docking studies, photophysical properties of (Z)-N-(pyrimidin-2-yl)-4-(thiophen-2-ylmethylene)amino) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Jayachitra R, Padmavathy M, Kanagavalli A, Thilagavathi G, Elangovan N, S.Sowrirajan, Thomas R. Synthesis, computational, experimental antimicrobial activities and theoretical molecular docking studies of (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino)-N-(thiazole-2-yl) benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Synthesis, structural, computational, electronic spectra, wave function properties and molecular docking studies of (Z)-4-(((5-methylfuran-2-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Synthesis, spectral, structural features, electronic properties, biological activities, computational, wave function properties, and molecular docking studies of (E)-4-(((pentafluorophenyl) methylene) amino)-N-(pyrimidin2-yl)benzenesulfonamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ali OAA, Elangovan N, Mahmoud SF, El-Gendey MS, Elbasheer HZE, El-Bahy SM, Thomas R. Synthesis, characterization, vibrational analysis and computational studies of a new Schiff base from pentafluoro benzaldehyde and sulfanilamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ganesan TS, Elangovan N, Vanmathi V, Sowrirajan S, Chandrasekar S, Murthy KS, Thomas R. Spectroscopic, Computational(DFT), Quantum mechanical studies and protein-ligand interaction of Schiff base 6,6-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol) from o-phenylenediamine and 3- methoxysalicylaldehyde. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Muthukumar R, Karnan M, Elangovan N, Karunanidhi M, Sankarapandian V, Thomas R. Synthesis, spectral, computational, wavefunction and molecular docking studies of 4-((thiophene-2-ylmethylene)amino)benzenesulfonamide from sulfanilamide and thiophene-2-carbalaldehyde. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Latha A, Elangovan N, Manoj K, Keerthi M, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, XRD, spectral, structural, quantum mechanical and anticancer studies of di(p-chlorobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Muthukumar R, Karnan M, Elangovan N, Karunanidhi M, Thomas R. Synthesis, spectral analysis, antibacterial activity, quantum chemical studies and supporting molecular docking of Schiff base (E)-4-((4-bromobenzylidene) amino)benzenesulfonamide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Manimozhi PK, Kavitha R, Thilagavathi R, Gokilavani GM. Theoretical, Experimental Studies on Molecular Structure and Vibrational Spectra of 2,6-Dibromo-4-Nitrophenol. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. K. Manimozhi
- PG and Research Department of Physics, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - R. Kavitha
- PG and Research Department of Physics, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - R. Thilagavathi
- PG and Research Department of Physics, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - G. M. Gokilavani
- PG and Research Department of Physics, Seethalakshmi Ramaswami College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
15
|
Li Z, Huang B, Wang Y, Yuan W, Wu Y, Yu R, Xing G, Zou T, Tao Y. Design, synthesis and application in biological imaging of a novel red fluorescent dye based on a rhodanine derivative. RSC Adv 2020; 11:160-163. [PMID: 35423009 PMCID: PMC8690906 DOI: 10.1039/d0ra08998b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
A novel acceptor–donor–acceptor type molecule, namely 2-triphenylamine-1,3-dia[2-(3-ethyl-4-oxo-thiazolidin-2-ylidene)-malononitrile] (2RDNTPA), is designed and synthesized. 2RDNTPA exhibits a large Stokes shift of 244 nm and red fluorescence emission of 629 nm with a decent photoluminescence quantum yield of 13%. Furthermore, as a potential red fluorescent dye, 2RDNTPA can be applied in fluorescence imaging of living cancer cells (HepG2) with negligible cytotoxicity and a half maximal inhibitory concentration much more than 100 μM. 2RDNTPA can be applied in fluorescence imaging of living cancer cells (HepG2) with red emission of 620 nm and negligible cytotoxicity with a half maximal inhibitory concentration much more than 100 μM.![]()
Collapse
Affiliation(s)
- Zijing Li
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University Nanjing P. R. China
| | - Bin Huang
- College of Life Sciences and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University Nanjing P. R. China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou P. R. China
| | - Wenbo Yuan
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University Nanjing P. R. China
| | - Yijing Wu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University Nanjing P. R. China
| | - Ruitao Yu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University Nanjing P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau Macao SAR 999078 China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou P. R. China
| | - Youtian Tao
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University Nanjing P. R. China
| |
Collapse
|