1
|
Dolui D, Das A, Hasanuzzaman M, Adak MK. Physiological and biomolecular interventions in the bio-decolorization of Methylene blue dye by Salvinia molesta D. Mitch. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-18. [PMID: 39392243 DOI: 10.1080/15226514.2024.2412242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Methylene blue, a cationic dye as a pollutant is discharged from industrial effluent into aquatic bodies. The dye is biomagnified through the food chain and is detrimental to the sustainability of aquatic flora. Despite of number of physico-chemical techniques of dye removal, the use of aquatic flora for bio-adsorption is encouraged. Thus, we used Salvinia molesta D. Mitch in bio-reduction of methylene blue on concentrations of 0, 10, 20, and 30 mg L-1 through 5 days with biosorption kinetics. The dye removal was concentration-dependent, maximized at 2 days with 30 mg L-1 which altered the relative growth rate (44%) of plants. Biosorption recorded 71% capacity at optimum pH (8.0), 24 h reducing major bond energies of amide, hydroxyl groups, etc. Bioaccumulation of dye changed potassium content (446%) under maximum dye concentration modifying tissues for dye sequestration. Reactive oxygen species were altered on dye reduction by oxidase (33%) with redox homeostasis by enzymes. Plants altered the metabolism with over accumulation of polyamines (51%), abscisic acids (448%), and phosphoenolpyruvate carboxylase (83%) on dye reduction. Thus, this study is rationalized with a sustainable approach where aquatic ecosystems can be decontaminated from dye toxicity with the exercise of bioresources like Salvinia molesta D. Mitch as herein.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Abir Das
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Malay Kumar Adak
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
2
|
Sorour FH, Aboeleneen NM, Abd El-Monem NM, Ammar YA, Mansour RA. Removal of malachite green from wastewater using date seeds as natural adsorbent; isotherms, kinetics, Thermodynamic, and batch adsorption process design. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1321-1335. [PMID: 38409765 DOI: 10.1080/15226514.2024.2316315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This research explores the feasibility of using date seeds (DS), an agricultural waste, for the adsorption of malachite green (MG) dye from synthesized wastewater. The characterization of the DS before and after adsorption was accomplished by FTIR, SEM, BET, and EDX measurements. Batch adsorption experiments were investigated for MG dye adsorption from aqueous solution onto the DS. The effect of different parameters such as solution pH, adsorbent dose, contact time, temperature, and the initial dye concentration were studied. The optimum pH, adsorbent dose, temperature, and contact time for the dye removal were found to be 5, 0.1 g, 25 °C, and 30 min, respectively. The equilibrium studies for the data with Langmuir, Freundlich, and Temkin isotherms showed that Freundlich isotherm is the best model to describe the adsorption of MG onto the DS particles which has a heterogeneous surface. It was found that the adsorption process follows a pseudo-second-order kinetic model which revealed that the intra-particle diffusion stage is the rate-controlling stage for the process. The thermodynamic parameters ΔG, ΔS, and ΔH suggest the possibility of chemisorption and physisorption simultaneously and indicate the exothermic and spontaneous characters of the adsorption of MG dye on DS with negative values of ΔH and ΔG.
Collapse
Affiliation(s)
- Faisal Hassan Sorour
- Chemical Engineering Department, Canal High Institute for Engineering and Technology, Suez, Egypt
| | - N M Aboeleneen
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| | - N M Abd El-Monem
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Yara A Ammar
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - R A Mansour
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| |
Collapse
|
3
|
Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Siqueira MU, Contin B, Fernandes PRB, Ruschel-Soares R, Siqueira PU, Baruque-Ramos J. Brazilian Agro-industrial Wastes as Potential Textile and Other Raw Materials: a Sustainable Approach. MATERIALS CIRCULAR ECONOMY 2022. [PMCID: PMC8790225 DOI: 10.1007/s42824-021-00050-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Brazilian agro-industrial chain generates about 291 million/tons/year of wastes, which, if inadequately destinated, could originate social and environmental risks. There is a growing need for the use of alternative raw materials to replace that originated from fossil resources in the Brazilian industry. Renewable materials play an important role on the sustainability of ecosystems and materials’ circularity. The issue has acquired importance in light of recent bio-based agro-fiber development potential applications. Considering sustainability guidelines, this study aimed to analyze the main Brazilian agro-industrial waste crops (temporary and permanent) as important sources of natural fibers and other raw materials. A systematic review of the literature (SRL) about Brazilian researches, based on concepts of industrial ecology, and the creation of a bibliometric analysis network were carried out. The agricultural biomass related to the main crops presents characteristics making them suitable to be applied for textiles, as natural fibers and polymers, in biosorbents for industrial effluents, and cellulose obtention and reinforcement material in composites. Thus, scientific investment in researches on materials and technology development are necessary to provide applications that could meet current and future demands and expand the scope of new materials for sustainability.
Collapse
Affiliation(s)
- Mylena Uhlig Siqueira
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | - Barbara Contin
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | | | - Raysa Ruschel-Soares
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| | - Philipe Uhlig Siqueira
- Department of Environmental Engineering, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, ES 29075-910 Brazil
| | - Julia Baruque-Ramos
- School of Arts, Sciences and Humanities, University of Sao Paulo, Av. Arlindo Bettio, 1000, Sao Paulo, SP 03828-000 Brazil
| |
Collapse
|
5
|
Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Kenawy ER, Tenhu H, Khattab SA, Eldeeb AA, Azaam MM. Highly efficient adsorbent material for removal of methylene blue dye based on functionalized polyacrylonitrile. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Experimental Design Analysis of Murexide Dye Removal by Carbon Produced from Waste Biomass Material. J CHEM-NY 2022. [DOI: 10.1155/2022/9735071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to investigate the adsorption of an anionic dye, the Murexide (MX) present in aqueous solution, on activated carbon, derived from prickly pear seed cake biomass after bio-oil extraction. The obtained adsorbent used was characterized by Bohem titration, pH of point of zero charge (pHPZC), FTIR spectroscopy, Brunauer–Emmett–Teller surface area (SBET), and scanning electron microscopy (SEM). The different experimental parameters of the adsorption process, such as temperature, contact time, initial dye concentration, and adsorbent dose, were studied. For the optimization of the process, the effects of these parameters were investigated using the full factorial experimental design methodology. Design Expert 11.1.2.0 Trial software was used for generating the statistical experimental design and analysing the observed data. Langmuir and Freundlich’s adsorption models were employed to provide a description of the equilibrium isotherm. The adsorption process was found to obey Langmuir, which indicates that the Murexide had formed a monolayer onto activated carbon. Furthermore, according to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-second-order model compared to the first-order Lagergren’s model. The thermodynamic studies indicated that the adsorption of Murexide occurs in a spontaneous and exothermic process. The regeneration process of the exhausted adsorbent was studied to assess the economic and operational feasibility. According to the obtained findings, it is proposed that the activated carbon prepared from prickly pear seed cake retains a high potential for Murexide removal and is suitable for repetitive usage.
Collapse
|
8
|
Adsorption of methylene blue on magnetite humic acid: Kinetic, isotherm, thermodynamic, and regeneration studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Dong K, Xu K, Wei N, Fang Y, Qin Z. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: preparation, characterization, adsorption, and kinetics studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Torezan L, Bortoluz J, Guerra NB, Ferrarini F, Bonetto LR, da Silva Teixeira C, da Silva Crespo J, Giovanela M, Carli LN. Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2008420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Luciane Torezan
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Jordana Bortoluz
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Nayrim Brizuela Guerra
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabrício Ferrarini
- Laboratório Virtual de Predição de Propriedades – LVPP, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Rafael Bonetto
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cristiano da Silva Teixeira
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Larissa Nardini Carli
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
11
|
Foroutan R, Peighambardoust SJ, Hemmati S, Khatooni H, Ramavandi B. Preparation of clinoptilolite/starch/CoFe 2O 4 magnetic nanocomposite powder and its elimination properties for cationic dyes from water and wastewater. Int J Biol Macromol 2021; 189:432-442. [PMID: 34450143 DOI: 10.1016/j.ijbiomac.2021.08.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
A new magnetic nanocomposite clinoptilolite (CLT)/Starch/CoFe2O4 was synthesized using co-precipitation method. The prepared magnetic composite powder was utilized for decontamination of methylene blue dye (MBD), methyl violet dye (MVD), and crystal violet dye (CVD) from water media. The BET analysis showed that CLT modification using starch and CoFe2O4 nanoparticles improved its specific surface and the amount of specific surface area for CLT, CoFe2O4, and CLT/Starch/CoFe2O4 powder was reported to be 18.82 m2.g-1, 151.4 m2.g-1, and 104.75 m2.g-1, respectively. Experimental results showed that pH 9 had a vital role in the adsorption process of all three types. Langmuir and Redlich-Petersen isotherm models were well fitted with experimental data. Also, the maximum adsorption capacity of CVD, MBD, and MVD to the desired composite was determined as 32.84 mg.g-1, 31.81 mg.g-1, and 31.15 mg.g-1, respectively. In addition, the kinetic data of the removal process followed a pseudo-first order (PFO) kinetic model. Negative thermodynamic parameters were indicated that the process is spontaneous and exothermic. Finally, ad(de)sorption experiments' results showed that the synthesized nanocomposite adsorbent has an excellent ability to adsorb cationic dyes after several consecutive cycles.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Saeed Hemmati
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Hamzeh Khatooni
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
12
|
Kinetic Study of the Ultrasound Effect on Acid Brown 83 Dye Degradation by Hydrogen Peroxide Oxidation Processes. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of ultrasound on the degradation of the dye Acid Brown 83 by seven different degradation methods (blank test using only ultrasound, hydrogen peroxide in a neutral medium, hydrogen peroxide in a sulfuric acid medium and hydrogen peroxide in a sulfuric acid medium in the presence of Fe(II), both without and with ultrasonic irradiation) is studied in this paper. The effectiveness of these methods is compared by analyzing the degradation percentages of the dye and its initial degradation rate. The application of ultrasound leads to a significant increase in the efficiency of any of the degradation method studied. Kinetic study of Acid Brown 83 degradation by the above-mentioned methods is carried out by using four kinetic models (first order, second order, Behnajady and pseudo-first order). The pseudo-first order model is the one that best fits the experimental data in all the used degradation methods. Although when the degradation is performed in the presence of Fe(II), the Behnajady model presents correlation coefficients slightly higher than those of the pseudo-first order, the maximum experimental conversions obtained fit much better in all cases to the pseudo first order model.
Collapse
|
13
|
Stanisz M, Klapiszewski Ł, Kołodyńska D, Jesionowski T. Development of functional lignin-based spherical particles for the removal of vanadium(V) from an aqueous system. Int J Biol Macromol 2021; 186:181-193. [PMID: 34246669 DOI: 10.1016/j.ijbiomac.2021.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
A new type of functional lignin-based spherical particles (L-CTAB) prepared with the use of hexadecyltrimethylammonium bromide (CTAB) was applied as an effective biosorbent for removing vanadium(V) ions. The porous structure, characteristic functional groups, electrokinetic stability, morphology and size of the L-CTAB particles were examined. The conditions of removal were also investigated, including pH (2-12), sorbent mass (0.1-0.5 g), concentration (10-100 mg/dm3), phase contact time (1-240 min) and temperature (293-333 K). At pH 5.0 the maximum sorption percentage (%S) of V(V) was 45%, while at pH 2.0 it was 32%. The maximum sorption capacity of V(V) for L-CTAB was found to be 10.79 mg/g. The kinetic data indicate that the sorption followed the pseudo-second-order and film diffusion models. Sorption equilibrium for V(V) ions removal by L-CTAB was reached after 60 min at the initial concentrations 10 and 50 mg/dm3. It has been shown that the adsorption of V(V) ions on the surface of L-CTAB is a heterogeneous, endothermic and spontaneous reaction, as evidenced by the calculated values of thermodynamic parameters - free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) - for the tested systems at different temperatures. HCl solutions, used as an L-CTAB regeneration agent, quantitatively eluted V(V) ions.
Collapse
Affiliation(s)
- Małgorzata Stanisz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Dorota Kołodyńska
- Maria Curie Skłodowska University, Institute of Chemical Sciences, Faculty of Chemistry, Department of Inorganic Chemistry, Maria Curie Skłodowska Sq. 2, PL-20031 Lublin, Poland.
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
14
|
Foschi M, Capasso P, Maggi MA, Ruggieri F, Fioravanti G. Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides. ACS OMEGA 2021; 6:16943-16954. [PMID: 34250353 PMCID: PMC8264846 DOI: 10.1021/acsomega.1c01877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 05/30/2023]
Abstract
In this work, pristine graphene oxide and its thermally reduced derivatives, rGO, were tested for the removal of triazines (atraton, prometryn, and atrazine) from water. The reduction process was optimized by means of design of experiments (DOE) coupled with response surface methodology (RSM), relying on the adsorption efficiency of the material. The optimal reduction conditions were calculated at a temperature of 110 °C maintained for 24 h; the mildest and simplest reduction protocol was chosen, as it allows in-air heat treatment with a common laboratory oven. The rGO samples were characterized before use, confirming a partial reduction process that, leaving intact most of the oxygenated functionalities on the graphene skeleton, may still allow favorable adsorption of pollutants through both hydrogen bonds and π-π interactions, which result from a large conjugated polyaromatic system. Triazine analyses were performed by high-performance liquid chromatography (HPLC); the data obtained from the adsorption isotherms were fitted with the Langmuir and Freundlich models, highlighting a slightly different adsorption behavior of atraton and prometryn compared with atrazine. Model outcomes were also used to support the hypotheses about the adsorption process.
Collapse
Affiliation(s)
- Martina Foschi
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, Coppito, L’Aquila (AQ) 67100, Italy
| | - Paola Capasso
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, Coppito, L’Aquila (AQ) 67100, Italy
| | - Maria Anna Maggi
- Hortus
Novus srl, Via Campo
Sportivo, Canistro, L’Aquila (AQ) 67050, Italy
| | - Fabrizio Ruggieri
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, Coppito, L’Aquila (AQ) 67100, Italy
| | - Giulia Fioravanti
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, Coppito, L’Aquila (AQ) 67100, Italy
| |
Collapse
|
15
|
Liakos EV, Gkika DA, Mitropoulos AC, Matis KA, Kyzas GZ. On the combination of modern sorbents with cost analysis: A review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|
17
|
Cemin A, Ferrarini F, Poletto M, Bonetto LR, Bortoluz J, Lemée L, Guégan R, Esteves VI, Giovanela M. Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. Int J Biol Macromol 2020; 170:375-389. [PMID: 33359804 DOI: 10.1016/j.ijbiomac.2020.12.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 02/03/2023]
Abstract
A lignin sample was extracted from Eucalyptus grandis sawdust, by the Klason method, and used as adsorbent for the removal of methylene blue (MB) from aqueous solutions. By using a set of complementary analytical tools, the lignin appeared to be constituted of oxygenated functional groups and aromatic moieties, while showing a specific surface area of 20 m2 g-1 and polydisperse particles. Different experimental conditions with various solid to liquid ratio, pH, as well as other external experimental parameters were investigated for the removal of MB by the lignin sample. The experimental adsorption data at the equilibrium were properly fitted by Langmuir model, while adsorption kinetical isotherms were correctly adjusted by the pseudo-second order model. The MB removal by lignin was spontaneous involving physisorption mechanisms leading to a saturation of the adsorption sites with a maximum adsorbed amount of about 32 mg g-1. The data acquired in this study also emphasized the interests to use lignin as potential adsorbent in the light of its properties for the removal of cationic dyes, including MB, with possible recycling and reuse cycles of lignin without any significant loss of its properties.
Collapse
Affiliation(s)
- Alexandra Cemin
- Área do conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil
| | - Fabrício Ferrarini
- Laboratório Virtual de Predição de Propriedades - LVPP, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2777, Bairro Santana, Porto Alegre 90035-007, RS, Brazil
| | - Matheus Poletto
- Área do conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil
| | - Luis R Bonetto
- Área do conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil
| | - Jordana Bortoluz
- Área do conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil
| | - Laurent Lemée
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP CNRS UMR 7285), Université de Poitiers, 4 rue Michel Brunet - TSA 51106, 86073, Poitiers Cedex 09, France
| | - Régis Guégan
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS - Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France; Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Valdemar I Esteves
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marcelo Giovanela
- Área do conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil.
| |
Collapse
|