1
|
Almulhim N, Abd El-Lateef HM, Gouda M, Khalaf MM, Abdou A. Fe(III) and Ni(II) imidazole-benzimidazole mixed-ligand complexes: synthesis, structural characterization, molecular docking, DFT studies, and evaluation of antimicrobial and anti-inflammatory activities. Dalton Trans 2025. [PMID: 40336279 DOI: 10.1039/d5dt00551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
This work delves into the synthesis, characterization, and bioactivity of new metal complexes of imidazole (IM)-based and benzimidazole (BZ)-based ligands with Fe(III) and Ni(II) ions. Broad characterization techniques, including elemental analysis, IR spectroscopy, magnetic moment measurement, electronic spectral analysis, mass spectrometry, thermal analysis, and DFT calculations, confirmed the successful preparation of the complexes with a 1 : 1 : 1 (M : IM : BZ) stoichiometry. The NiBZI M and FeBZIM complexes possessed octahedral geometry, with one and two water molecules coordinated with Fe(III) and Ni(II), respectively. DFT calculations demonstrated that the reduction of the energy gap and increase in softness for the metal complexes resulted from metal coordination, enhancing the reactivity and biological activity of the complexes. The FeBZIM and NiBZIM complexes exhibited strong antimicrobial activity, with both complexes displaying improved efficacy towards Gram-positive and Gram-negative bacteria compared with their corresponding free ligands. Their activities were comparable to the standard antibiotic chloramphenicol. Furthermore, these complexes exhibited good antifungal activity towards Aspergillus niger and Candida albicans, surpassing that of the free ligands. MIC values also ensured enhanced antimicrobial activity of the metal complexes. Other than these properties, the complexes demonstrated significant anti-inflammatory activity, where the FeBZIM complex exhibited the highest activity, with an IC50 value closer to that of the reference drug. Molecular docking studies on the E. coli FabH-CoA complex (PDB ID: 1HNJ) and human cyclooxygenase-2 (COX-2) (PDB ID: 5IKT) revealed that the FeBZIM complex exhibited the highest binding affinity with the formation of several hydrogen bonds with key amino acid residues, suggesting a favorable antibacterial activity. Overall, the newly synthesized FeBZIM and NiBZIM complexes demonstrated immense potential as novel antimicrobial and anti-inflammatory drugs with enhanced efficacy compared with their free ligands.
Collapse
Affiliation(s)
- Nourah Almulhim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Aly Abdou
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
2
|
Homocianu M, Hamciuc E, Hamciuc C. Sensing of Co 2+ and Cu 2+ Ions Using Dimethylamino-functionalized Poly(azomethine-1,3,4-oxadiazole)s. J Fluoresc 2025; 35:3495-3505. [PMID: 38836974 DOI: 10.1007/s10895-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
The ability of OxT and OxFl azomethines to recognize metal ions in THF solutions was investigated using UV-vis absorption techniques. Various metal ions, including Cd2+, Hg2+, Co2+, Sn2+, Cu2+, Ni2+, Zn2+ and Ag+, were tested. The absorption spectra revealed two distinct π-π* transition bands in the 273-278 nm and 330-346 nm wavelength ranges. Additionally, OxFl displayed an absorption peak at 309 nm, attributed to the fluorene group. Spectral titrations were used to study the fluorescence behavior in the presence of these metal ions. The results showed significant quenching with Co2+ and Cu2+ ions, while other metal ions had minimal effects on the fluorescence intensity. The quenching mechanism was further analyzed using the Stern-Volmer and Lehrer equations, and the binding constants ( K b fl ) were calculated using the Benesi-Hildebrand relations. The results confirm that Co2+ has a 1:2 stoichiometry and Cu2+ has a 1:1 stoichiometry, indicating the strong affinity of OxFl and OxT for these ions. The negative values of ΔG (Gibbs free energy) suggest that complex formation occurs spontaneously at room temperature.
Collapse
Affiliation(s)
- Mihaela Homocianu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Elena Hamciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Corneliu Hamciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| |
Collapse
|
3
|
Gadali KE, Rafya M, Mansouri AEE, Maatallah M, Van-derlee A, Mehdi A, Ouahrouch A, Benkhalti F, Sanghvi YS, Taourirte M, Lazrek HB. Synthesis, structural characterization and antibacterial activity evaluation of novel quinolone-1,2,3-triazole-benzimidazole hybrids. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Macías-Hernández CE, Romero-Chávez MM, Mojica-Sánchez JP, Pineda-Urbina K, Martínez MTS, Jimenez-Ruiz EI, Via LD, Ramos-Organillo Á. Synthesis and characterization of new monothiooxalamides containing pyridine nuclei with promising antiproliferative and antioxidant activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
El‐Nahass MN, Bakr EA, El‐Gamil MM, Ibrahim SA. Synthesis, characterization and multifunctional applications of novel metal complexes based on thiazolylazo dye. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marwa N. El‐Nahass
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Eman A. Bakr
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mohammed M. El‐Gamil
- Department of Toxic and Narcotic Drug, Forensic Medicine Mansoura Laboratory, Medico legal Organization, Ministry of Justice Egypt
| | - Seham A. Ibrahim
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
6
|
El‐Sayed YS, Gaber M, Fahmy RM, Fathallah S. Characterization, theoretical computation, DNA‐binding, molecular docking, antibacterial and antioxidant activities of new metal complexes of (E)‐1‐((1H‐1,2,4‐triazol‐3‐yl)diazenyl)naphthalen‐2‐ol. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusif S. El‐Sayed
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Mohammed Gaber
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Rowaida M. Fahmy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Shaimaa Fathallah
- Chemistry Departments, Faculty of Science Taif University Saudi Arabia
| |
Collapse
|
7
|
Sherwani IAHA, Köse A, Güngör Ö, Kırpık H, Güngör SA, Köse M. Synthesis, characterization and investigation of photophysical and biological properties of Cu(II) and Zn(II) complexes of benzimidazole ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School Kahramanmaras Istiklal University Kahramanmaras Turkey
| | - Özge Güngör
- Chemistry Department Kahramanmaraş Sutcu Imam University Kahramanmaras Turkey
| | - Hilal Kırpık
- Chemistry Department Kahramanmaraş Sutcu Imam University Kahramanmaras Turkey
| | - Seyit Ali Güngör
- Chemistry Department Kahramanmaraş Sutcu Imam University Kahramanmaras Turkey
| | - Muhammet Köse
- Chemistry Department Kahramanmaraş Sutcu Imam University Kahramanmaras Turkey
| |
Collapse
|
8
|
Turgut E, Gungor O, Kirpik H, Kose A, Gungor SA, Kose M. Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enes Turgut
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Ozge Gungor
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Hilal Kirpik
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Ayşegül Kose
- Bioengineering and Sciences Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
- Department of Property Protection and Safety, Elbistan Vocational School Istiklal University Kahramanmaras Turkey
| | - Seyit Ali Gungor
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Muhammet Kose
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| |
Collapse
|
9
|
Reshma R, Selwin Joseyphus R, Arish D, Reshmi Jaya RJ, Johnson J. Tridentate imidazole-based Schiff base metal complexes: molecular docking, structural and biological studies. J Biomol Struct Dyn 2021; 40:8602-8614. [PMID: 33896364 DOI: 10.1080/07391102.2021.1914171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A novel Schiff base was synthesized by the condensation of imidazole-2-carboxaldehyde with l-histidine in an equimolar ratio. The prepared Schiff base was characterized by elemental analysis and spectral characterization techniques. It was then complexed with a series of 3-d metal(II) ions like manganese, iron, cobalt, nickel, copper and zinc. The coordination properties, nature of bonding and stability of the complexes were deduced from elemental analysis, IR, UV-vis, 1H NMR, mass, electronic spectra, magnetic, conductivity and thermogravimetric analysis. IR studies support the tridentate behaviour of Schiff base as well as its coordination to the central metal ion through an azomethine nitrogen, deprotonated carboxylic oxygen and imidazole ring nitrogen atoms of histidine. The electronic spectra and magnetic moment data demonstrate that the complexes have an octahedral geometry, except zinc complex, which has a tetrahedral geometry. In vitro antimicrobial activity of the synthesized compounds has been shown to exhibit excellent antibacterial and antifungal activities. The antibacterial property of the prepared Schiff base was further confirmed by conducting a docking study of target proteins involved in the antibacterial mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Reshma
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous), University of Kerala, Nalanchira, Kerala, India.,Department of Chemistry, Sree Narayana College, Varkala, Kerala, India
| | - R Selwin Joseyphus
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous), University of Kerala, Nalanchira, Kerala, India
| | - D Arish
- FunGlass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | | | - J Johnson
- Department of Chemistry, Santhom Malankara Arts and Science College, Ednji, Thiruvananthapuram, Kerala, India
| |
Collapse
|