1
|
Pele R, Marc G, Mogoșan C, Apan A, Ionuț I, Tiperciuc B, Moldovan C, Araniciu C, Oniga I, Pîrnău A, Vlase L, Oniga O. Synthesis, In Vivo Anticonvulsant Activity Evaluation and In Silico Studies of Some Quinazolin-4(3H)-One Derivatives. Molecules 2024; 29:1951. [PMID: 38731442 PMCID: PMC11085150 DOI: 10.3390/molecules29091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.
Collapse
Affiliation(s)
- Raluca Pele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Mogoșan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Anamaria Apan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cătălin Araniciu
- Department of Therapeutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| |
Collapse
|
2
|
Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers (Basel) 2022; 14:polym14194068. [PMID: 36236017 PMCID: PMC9571392 DOI: 10.3390/polym14194068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, previously developed acetoacetates of two tall-oil-based and two commercial polyols were used to obtain polymers by the Michael reaction. The development of polymer formulations with varying cross-link density was enabled by different bio-based monomers in combination with different acrylates—bisphenol A ethoxylate diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate. New polymer materials are based on the same polyols that are suitable for polyurethanes. The new polymers have qualities comparable to polyurethanes and are obtained without the drawbacks that come with polyurethane extractions, such as the use of hazardous isocyanates or reactions under harsh conditions in the case of non-isocyanate polyurethanes. Dynamic mechanical analysis, differential scanning calorimetry, thermal gravimetric analysis, and universal strength testing equipment were used to investigate the physical and thermal characteristics of the created polymers. Polymers with a wide range of thermal and mechanical properties were obtained (glass transition temperature from 21 to 63 °C; tensile modulus (Young’s) from 8 MPa to 2710 MPa and tensile strength from 4 to 52 MPa). The synthesized polymers are thermally stable up to 300 °C. The suggested method may be used to make two-component polymer foams, coatings, resins, and composite matrices.
Collapse
|
3
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
4
|
Anjum F, Ali F, Mohammad T, Shafie A, Akhtar O, Abdullaev B, Hassan I. Discovery of Natural Compounds as Potential Inhibitors of Human Carbonic Anhydrase II: An Integrated Virtual Screening, Docking, and Molecular Dynamics Simulation Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:513-524. [PMID: 34255561 DOI: 10.1089/omi.2021.0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbonic anhydrase II (CAII) is one of the zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide, leading to the formation of bicarbonate and proton. CAII plays a significant role in health and disease. For example, CAII helps to maintain eye pressure while regulating the pH of the tumor microenvironment, and by extension, contributing to cancer progression. Owing to its remarkable role in cancer, visual health, and other human diseases, CAII can serve as an attractive therapeutic target. We report an original study based on high-throughput virtual screening of natural compounds from the ZINC database in search of potential inhibitors of CAII. We selected the hits based on the physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, pan-assay interference compound (PAINS) patterns, and interaction analysis. Importantly, two natural compounds were identified, ZINC08918123 and ZINC00952700, bearing considerable affinity and specific interactions to the residues of the CAII-binding pocket with well-organized conformational fitting compatibility. We investigated the conformational dynamics of CAII in complex with the identified compounds through molecular dynamics simulation, which revealed the formation of a stable complex preserved throughout the 100 ns trajectories. The stability of the protein/ligand complexes is maintained by significant numbers of noncovalent interactions throughout the simulations. In conclusion, natural compounds identified in the present study specifically and computer-assisted drug design broadly offer a reliable resource and strategy to discover potential promising therapeutic inhibitors of CAII to cure various cancers and glaucoma after further experimental validation and clinical studies.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fatima Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Omar Akhtar
- Department of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|