1
|
Agrawal N, Bahota AS, Khan A, Chaudhary R, Singh KK, Tandon P. Detection of Phenylalanine by Iridium Nanoclusters Using Time-Dependent Density Functional Theory Calculations. ACS OMEGA 2024; 9:38186-38194. [PMID: 39281901 PMCID: PMC11391552 DOI: 10.1021/acsomega.4c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Metal nanoclusters have several applications in biological processes, medicine, cancer therapy, catalysis, etc. Iridium (Ir) nanoclusters exhibit excellent detection behavior compared to their bulk material. This work includes a deep insight into the interaction of Ir nanoclusters of four atoms (Ir4) with amino acids and the analysis of Ir-amino acid (Ir-AAc) complexes. UV-visible spectroscopy of the Ir4 nanocluster, amino acids, and their complexes was discussed as a way to detect amino acids with the help of the Ir4 nanocluster. In UV-visible analysis, the UV-visible peak of phenylalanine (Phe) appeared at 204 nm with an excitation energy of 6.02 eV with a 0.0516 oscillator strength. Meanwhile, only in the Ir4 nanocluster-phenylalanine (Ir-Phe) complex, the UV-visible peak was observed at 661 nm with an excitation energy of 1.87 eV and oscillator strength of 0.0051. This peak was observed due to the transition from HOMO-1 to LUMO+3. In the other complexes, no UV-visible peaks are observed. Thus, the results predict that the Ir4 nanocluster can be used in the detection of Phe via UV-visible spectra.
Collapse
Affiliation(s)
- Neelam Agrawal
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Ashok Singh Bahota
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Areeba Khan
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Rajni Chaudhary
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Keshav Kumar Singh
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Poonam Tandon
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
- Vice Chancellor in Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 Uttar Pradesh, India
| |
Collapse
|
2
|
Sarath Kumar CB, Reji RP, Sivalingam Y, Kawazoe Y, Surya VJ. Carbon and boron nitride quantum dots as optical sensor probes for selective detection of toxic metals in drinking water: a quantum chemical prediction through structure- and morphology-dependent electronic and optical properties. RSC Adv 2024; 14:28182-28200. [PMID: 39234523 PMCID: PMC11372860 DOI: 10.1039/d4ra04843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Toxic metals present in drinking water pose a serious threat to the environment and human beings when present in abundance. In this work, we investigated the sensing ability of quantum dots (pristine CQDs, boron/nitrogen/sulphur (B/N/S)-doped CQDs, and BNQDs) of various sizes and morphologies (rectangular, circular, and triangular) towards toxic metals such as arsenic (As), cobalt (Co), nickel (Ni), copper (Cu), and lead (Pb) using quantum chemical density functional theory calculations in both gas and water phases. We probed the structural, electronic, and optical properties of the QDs. All the modelled QDs are energetically stable. Frontier molecular orbital analysis predicted that BNQDs are more chemically stable than all other CQDs. UV-vis absorption and Raman spectra analyses helped to understand the optical properties of all the QDs. Further, adsorption studies revealed that triangular pristine CQDs and sulphur-doped CQDs show higher adsorption affinity towards the toxic metals. The magnitude of adsorption energies follows the trend Ni > Pb > As > Cu > Co in most of the QDs. Several pristine and doped CQDs exhibited chemisorption towards the toxic metals, and hence, they can be used as adsorbents. However, a majority of BNQDs showed physisorption towards the metals, and therefore, they can be used as efficient optical sensors compared to CQDs. Further, the sensing ability of the QDs was explored through optical phenomena such as changes in UV-vis absorption spectra and fluorescence after metal adsorption. When compared to pristine CQDs and B/N/S-doped CQDs, metal complexation caused significant changes in the UV-vis absorbance peak intensities in BNQDs along with peak shifts. Moreover, metal interaction with the QDs increased their fluorescence lifetime with the highest values observed in Co-adsorbed triangular H18C46 (152.30 ns), Pb-adsorbed rectangular H15C30S (21.29 ns), and As-adsorbed circular B27N27H18 (2.99 μs) among pristine CQDs, B/N/S-doped CQDs, and BNQDs, respectively. Overall, we believe that our first-of-its-kind computational prediction of the optical sensing ability of tailor-made zero-dimensional systems such as QDs will be a great aid for experimentalists in designing novel and rapid optical probes to detect toxic metals in drinking water.
Collapse
Affiliation(s)
- Chedharla Balaji Sarath Kumar
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Rence Painappallil Reji
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Velappa Jayaraman Surya
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
| |
Collapse
|
3
|
Ahmed MT, Roman AA, Roy D, Islam S, Ahmed F. Phosphorus-doped T-graphene nanocapsule toward O 3 and SO 2 gas sensing: a DFT and QTAIM analysis. Sci Rep 2024; 14:3467. [PMID: 38342938 PMCID: PMC10859388 DOI: 10.1038/s41598-024-54110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Tetragonal graphene nano-capsule (TGC), a novel stable carbon allotrope of sp2 hybridization is designed and doped with phosphorus (P) to study the O3 and SO2 gas sensitivity via density functional theory calculation. Real frequencies verified the natural existence of both TGC and P-doped TGC (PTGC). Both TGC and PTGC suffer structural deformations due to interaction with O3 and SO2 gases. The amount of charge transfer from the adsorbent to the gas molecule is significantly greater for O3 adsorption than SO2 adsorption. The adsorption energies for TGC + O3 and PTGC + O3 complexes are - 3.46 and - 4.34 eV respectively, whereas for TGC + SO2 and PTGC + SO2 complexes the value decreased to - 0.29 and - 0.30 eV respectively. The dissociation of O3 is observed via interaction with PTGC. A significant variation in electronic energy gap and conductivity results from gas adsorption which can provide efficient electrical responses via gas adsorption. The blue/red shift in the optical response proved to be a way of detecting the types of adsorbed gases. The adsorption of O3 is exothermic and spontaneous whereas the adsorption of SO2 is endothermic and non-spontaneous. The negative change in entropy verifies the thermodynamic stability of all the complexes. QTAIM analysis reveals strong covalent or partial covalent interactions between absorbent and adsorbate. The significant variation in electrical and optical response with optimal adsorbent-gas interaction strength makes both TGC and PTGC promising candidates for O3 and SO2 sensing.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Abdullah Al Roman
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
4
|
Yang Y, Zhong Z, Du H, Li Q, Zheng X, Qi R, Ren P. Experimental and theoretical study to control the heavy metals in solid waste and sludge during pyrolysis using modified expanded vermiculite. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132885. [PMID: 37918072 DOI: 10.1016/j.jhazmat.2023.132885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Na+/K+/Mg2+/Ca2+ expansion-modified vermiculite and calcination expansion (700 °C, 800 °C and 900 °C)-modified vermiculite (700-Mg-V, 800-Mg-V and 900-Mg-V) were prepared as additives to control the emission of five heavy metals (Zn, Cr, Cu, Pb, and Cd) during the pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse. Mg2+-Modified vermiculite obtained via thermally activated calcination at 800 °C retained 65% of heavy metals from all raw materials at 450 °C. Zn, Cr, and Cu retained nearly 90%. Although modified vermiculite could reduce the ecological risk, Cd had an ecological risk level higher than Zn, Cr, Cu, and Pb. The fine textural properties, laminated morphology, and expansion capacity of modified vermiculite were positively correlated with its retention of heavy metals. Heavy metals interacted with the (002) surface of vermiculite, and the reactions were mainly concentrated near the 17-O and surrounding atoms. The heavy-metal monomers were less capable of binding to the (002) surface of vermiculite than the oxides and chlorides of heavy metals. The effect of heavy-metal oxides and chlorides binding to the (002) surface of vermiculite was related to heavy metals.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Pengkun Ren
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Cui P, Wu Q, Zhiwei L. Exploring the dual capabilities of BNQDs: a comprehensive study on enhancing photoelectric performance and photoluminescence via ligand functionalization. J Mol Model 2023; 30:6. [PMID: 38091121 DOI: 10.1007/s00894-023-05803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
CONTEXT Boron nitride quantum dots (BNQDs) are emerging as promising multifunctional nanomaterials for renewable energy and optoelectronics owing to their versatile properties. However, rational design principles to tailor their photoelectric and photoluminescent capabilities remain scarce. This study employs density functional theory (DFT) to provide fundamental insights into using urea, thiourea, and PPD ligands to modulate the bandgap, charge transfer dynamics, and recombination processes of BNQDs. Modeling explains that incorporating specific ligands enables visible light absorption, spatial charge separation, continuous photocatalytic cycling, and high quantum yields in BNQDs. The structure-property relationships established pave the way for targeted synthesis of high-performance BNQD photocatalysts and light emitters. METHODS This investigation utilized density functional theory (DFT) with the B3LYP functional and 6-31G(d,p) basis set to optimize the geometries of pristine and ligand-functionalized boron nitride quantum dots (BNQDs). The absorption spectra were generated using time-dependent DFT (TDDFT). A Ti38O76 cluster modeled the TiO2 substrate. The cpcm solvation model in Gaussian 09 defined the toluene solvent. Cohesive energies, charge transfer lengths, recombination rates, and conversion efficiencies were calculated to establish structure-property relationships. Multiwfn analyzed the charge densities. The modeling provides insights into tuning BNQD photocatalytic and photoluminescent properties using specific ligands.
Collapse
Affiliation(s)
- Peng Cui
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, China.
| | - Qiulan Wu
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, China
| | - Li Zhiwei
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, China
| |
Collapse
|
6
|
Ahmed MT, Roy D, Roman AA, Islam S, Ahmed F. A first-principles investigation of Cr adsorption on C 8 and B 4N 4 nanocages in aqueous mediums. Phys Chem Chem Phys 2023; 25:32261-32272. [PMID: 37988166 DOI: 10.1039/d3cp04225a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Heavy metal removal from polluted environments is one of the vital research areas for better and healthier living. In this research, C8 and B4N4 nanocage-like quantum dots are investigated for heavy metal (Cr) removal applications via density functional theory calculations. The adsorption of up to two Cr atoms has been studied in both air and a water medium. The adsorption of Cr atoms results in significant structural deformation of the adsorbents with a high adsorption energy of -8.74 and -5.77 eV for C8 and B4N4 nanostructures, respectively, which is further increased with an increasing number of Cr atoms. All adsorbents and complex structures showed real vibrational frequencies. Mulliken charge and electrostatic potential analysis reveal a significant charge transfer between adsorbate-adsorbent. The adsorption process causes a decrease in the energy gap of the adsorbents. All the reactions in this study were spontaneous and thermodynamically ordered. QTAIM analysis verifies that the interactions of the adsorbents with Cr atoms are strong partial covalent. The study's findings make C8 and B4N4 nanostructures potential candidates for Cr-detection and removal applications.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Abdullah Al Roman
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Milon, Roy D, Ahmed F. A DFT study to investigate the physical, electrical, optical properties and thermodynamic functions of boron nanoclusters (M xB 2n0; x=1,2, n=3,4,5). Heliyon 2023; 9:e17886. [PMID: 37539100 PMCID: PMC10395302 DOI: 10.1016/j.heliyon.2023.e17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
First Principle DFT calculations employing the B3LYP/LanL2DZ/SDD level of theory were used to analyze the various characteristics of boron nanoclusters (B6, B8, and B10). These pure structures were further doped with four transition metals (Ta, Ti, Tc, and V) to examine the enhancement of the pure structures' structural, electrical, and optical features. To study structural stability, we have estimated cohesion energy and imaginary frequencies. Cohesion energies were entirely negative, with a range of -3.37 eV to -8.07 eV, and most constructions had no imaginary frequencies, indicating their structural occurrences. The calculated adsorption energy suggests that the order of stability of the pristine boron nanoclusters is B10>B8>B6, and TcB10 and Tc2B10 are the more stable structures. Mulliken charge, DOS, HOMO-LUMO, and the HOMO-LUMO gap have all been examined in-depth to provide insight into electrical characteristics. UV-Vis and CD measurements show the doped boron nanoclusters have excellent optical properties. Aside from calculating thermodynamic functions, we have also calculated the global DFT parameters, which give us a deep quantum mechanical understanding of the optimized structure for further research and applications in the field of science and technology.
Collapse
Affiliation(s)
- Milon
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jhangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
8
|
Kaviani S, Tayurskii DA, Nedopekin OV, Piyanzina I. DFT insight into Cd2+, Hg2+, Pb2+, Sn2+, As3+, Sb3+, and Cr3+ heavy metal ions adsorption onto surface of bowl-like B30 nanosheet. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Kaviani S, Izadyar M. ZIF-8 metal-organic framework conjugated to pristine and doped B12N12 nanoclusters as a new hybrid nanomaterial for detection of amphetamine. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|