1
|
Xiang Z, Yang L, Yu B, Zeng Q, Huang T, Shi S, Yu H, Zhang Y, Wu J, Zhu M. Recent advances in polymer-based thin-film electrodes for ECoG applications. J Mater Chem B 2025; 13:454-471. [PMID: 39588722 DOI: 10.1039/d4tb02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Electrocorticography (ECoG) has garnered widespread attention owing to its superior signal resolution compared to conventional electroencephalogram (EEG). While ECoG signal acquisition entails invasiveness, the invasive rigid electrode used inevitably inflicts damage on brain tissue. Polymer electrodes that combine conductivity and transparency have garnered great interest because they not only facilitate high-quality signal acquisition but also provide additional insights while preserving the health of the brain, positioning them as the future frontier in the brain-computer interface (BCI). This review summarizes the multifaceted functions of polymers in ECoG thin-film electrodes for the BCI. We present the abilities of sensitive and structural polymers focusing on impedance reduction, signal quality improvement, good flexibility, and transparency. Typically, two sensitive polymers and four structural polymers are analyzed in detail in terms of ECoG electrode properties. Moreover, the underlying mechanism of polymer-based electrodes in signal quality enhancement is revealed. Finally, the remaining challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Zhengchen Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liangtao Yang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qi Zeng
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Tao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuo Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Hao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Stojanoska I, Okorn M, Kmet B, Uršič H, Gradišnik V, Čakara D, Kovač J, Kuscer D. Indium-zinc-oxide thin films produced by low-cost chemical solution deposition: Tuning the microstructure, optical and electrical properties with the processing conditions. Heliyon 2023; 9:e19744. [PMID: 37809819 PMCID: PMC10559063 DOI: 10.1016/j.heliyon.2023.e19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Indium-zinc-oxide (IZO) films were prepared by spin coating an ethanol-ethylene-glycol precursor solution with a Zn/(In + Zn) ratio of 0.36 on glass. The effects of temperature on the structure, microstructure, electrical, and optical properties of the IZO thin films were investigated by thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, electron and atomic-force microscopy, X-ray photoelectron spectroscopy and variable-angle spectroscopic ellipsometry. The prepared IZO thin films heated at 500, 600, and 700 °C in air were transparent, without long-range ordering, and with an RMS surface roughness of less than 1 nm. The lowest electrical resistivity at room temperature, 0.0069 Ωcm, was observed for the 115-nm-thick IZO thin film heated at 600 °C in air and subsequently post-annealed in Ar/H2. The thin film exhibited a microstructure characterized by grains typically 20 nm in size and had no organic residues. This film exhibits uniaxial optical anisotropy due to its ultra-thin lamellae with a high electron density. The ordinary refractive index was fitted as a Tauc-Lorentz-Urbach function, which is typical of an indirect absorption edge occurring in amorphous semiconductor materials. The principal absorption peak with an onset at about 2.8 eV and a Tauc gap energy of ∼2.6 eV is similar to those observed for In2O3. The described process of chemical solution deposition and subsequent curing is promising for the low-cost fabrication of IZO thin films for transparent electronics, and can be used to tune the structure and microstructure of IZO thin films, as well as their electrical and optical properties.
Collapse
Affiliation(s)
| | - Miha Okorn
- Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Hana Uršič
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Vera Gradišnik
- University of Rijeka, Faculty of Engineering, Rijeka, Croatia
- Center for Micro- and Nanosciences and Technologies, Rijeka, Croatia
| | - Duško Čakara
- University of Rijeka, Department of Biotechnology, Croatia
- Center for Micro- and Nanosciences and Technologies, Rijeka, Croatia
| | | | | |
Collapse
|
3
|
Duran F, Diaz-Uribe C, Vallejo W, Muñoz-Acevedo A, Schott E, Zarate X. Adsorption and Photocatalytic Degradation of Methylene Blue on TiO 2 Thin Films Impregnated with Anderson-Evans Al-Polyoxometalates: Experimental and DFT Study. ACS OMEGA 2023; 8:27284-27292. [PMID: 37546624 PMCID: PMC10399183 DOI: 10.1021/acsomega.3c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023]
Abstract
In this work, we fabricated a TiO2 thin film, and the same film was modified with an Anderson aluminum polyoxometalate (TiO2-AlPOM). Physical-chemical characterization of the catalysts showed a significant change in morphological and optical properties of the TiO2 thin films after surface modification. We applied the kinetic and isothermal models to the methylene blue (MB) adsorption process on both catalysts. The pseudo-second order model was the best fitting model for the kinetic results; qe (mg/g) was 11.9 for TiO2 thin films and 14.6 for TiO2-AlPOM thin films, and k2 (g mg-1 min-1) was 16.3 × 10-2 for TiO2 thin films and 28.2 × 10-2 for TiO2-AlPOM thin films. Furthermore, the Freundlich model was suitable to describe the isothermal behavior of TiO2, KF (5.42 mg/g), and 1/n (0.312). The kinetics of photocatalytic degradation was fitted using the Langmuir-Hinshelwood model; kap was 7 × 10-4 min-1 for TiO2 and 13 × 10-4 min-1 for TiO2-AlPOM. The comparative study showed that TiO2 thin films reach a 19.6% MB degradation under UV irradiation and 9.1% MB adsorption, while the TiO2-AlPOM thin films reach a 32.6% MB degradation and 12.2% MB adsorption on their surface. The surface modification improves the morphological, optical, and photocatalytic properties of the thin films. Finally, the DFT study supports all the previously shown results.
Collapse
Affiliation(s)
- Freider Duran
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - Carlos Diaz-Uribe
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - William Vallejo
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - Amner Muñoz-Acevedo
- Grupo
de Investigación en Química y Biología, Universidad del Norte, Puerto Colombia 81007, Colombia
| | - Eduardo Schott
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, Santiago 4860, Chile
- Millenium
Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Concepción 4030000, Chile
| | - Ximena Zarate
- Instituto
de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile. Avenida Pedro de Valdivia 425, Santiago 7500912, Chile
| |
Collapse
|
4
|
Dinca V, Toader G, Gavrila R, Brincoveanu O, Dinescu A, Rusen E, Diacon A, Mocanu A. Surface Modification Using MAPLE Technique for Improving the Mechanical Performance of Adhesive Joints. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:964. [PMID: 36985858 PMCID: PMC10054649 DOI: 10.3390/nano13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The adhesive bonds that ensure the appropriate mechanical properties for metal joining imply the surface chemical and wetting modification characteristics of the substrates. In this work, matrix-assisted pulsed laser evaporation (MAPLE) was used for the surface modification of Al via the deposition of two chemical compounds, polyvinyl alcohol (PVA) and triethanolamine (TEA), from frozen aqueous solutions. The deposition of the TEA and PVA layers was evidenced by FT-IR, SEM, and AFM analysis. The contact angle measurements evidenced the change in the hydrophilicity of the surface and surface free energies. The performance of the commercial silyl-based polymer adhesive Bison Max Repair Extreme Adhesive® was evaluated by tensile strength measurements. This method led to a change in tensile strength of 54.22% in the case of Al-TEA and 36.34% for Al-PVA compared with the control. This study gives preliminary insights into using MAPLE, for the first time in adhesive applications, as a pretreatment method for Al plates for adhesive bonding reinforcement.
Collapse
Affiliation(s)
- Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Măgurele, Ilfov, Romania
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 Blvd. George Coșbuc, Sector 5, 501410 Bucharest, Romania
| | - Raluca Gavrila
- National Institute for Research and Development in Microtechnologies IMT, 126A Erou Inacu Nicolae Street, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies IMT, 126A Erou Inacu Nicolae Street, 077190 Bucharest, Romania
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies IMT, 126A Erou Inacu Nicolae Street, 077190 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu Campus, 1-7 Gh. Polizu Street, Sector 1, 011061 Bucharest, Romania
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 Blvd. George Coșbuc, Sector 5, 501410 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu Campus, 1-7 Gh. Polizu Street, Sector 1, 011061 Bucharest, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu Campus, 1-7 Gh. Polizu Street, Sector 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Moumen A, Kumarage GCW, Comini E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:1359. [PMID: 35214257 PMCID: PMC8963036 DOI: 10.3390/s22041359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023]
Abstract
This review focuses on the synthesis of p-type metal-oxide (p-type MOX) semiconductor thin films, such as CuO, NiO, Co3O4, and Cr2O3, used for chemical-sensing applications. P-type MOX thin films exhibit several advantages over n-type MOX, including a higher catalytic effect, low humidity dependence, and improved recovery speed. However, the sensing performance of CuO, NiO, Co3O4, and Cr2O3 thin films is strongly related to the intrinsic physicochemical properties of the material and the thickness of these MOX thin films. The latter is heavily dependent on synthesis techniques. Many techniques used for growing p-MOX thin films are reviewed herein. Physical vapor-deposition techniques (PVD), such as magnetron sputtering, thermal evaporation, thermal oxidation, and molecular-beam epitaxial (MBE) growth were investigated, along with chemical vapor deposition (CVD). Liquid-phase routes, including sol-gel-assisted dip-and-spin coating, spray pyrolysis, and electrodeposition, are also discussed. A review of each technique, as well as factors that affect the physicochemical properties of p-type MOX thin films, such as morphology, crystallinity, defects, and grain size, is presented. The sensing mechanism describing the surface reaction of gases with MOX is also discussed. The sensing characteristics of CuO, NiO, Co3O4, and Cr2O3 thin films, including their response, sensor kinetics, stability, selectivity, and repeatability are reviewed. Different chemical compounds, including reducing gases (such as volatile organic compounds (VOCs), H2, and NH3) and oxidizing gases, such as CO2, NO2, and O3, were analyzed. Bulk doping, surface decoration, and heterostructures are some of the strategies for improving the sensing capabilities of the suggested pristine p-type MOX thin films. Future trends to overcome the challenges of p-type MOX thin-film chemical sensors are also presented.
Collapse
Affiliation(s)
| | | | - Elisabetta Comini
- Sensor Laboratory, Department of Information Engineering, University of Brescia, Valotti 9, 25123 Brescia, Italy; (A.M.); (G.C.W.K.)
| |
Collapse
|